Tag Archives: materials

Analysis: Best Practices for Providing Effective Daylight in Mid-Century Modern Structures.

DOCOMOMO_OREGON and the Northwest Chapter of the Association for Preservation Technology recently held an Energy Conservation Symposium that explored issues facing mid-century modern buildings: How can modern historic buildings comply with today’s energy conservation standards? Is it possible to maintain the integrity of the historic building materials and aesthetics while also meeting new energy conservation requirements?

At PMA we believe that while challenging, it is possible to maintain the integrity of these historic mid-century modern buildings and meet new energy conservation requirements. In an effort to explore this possibility, we submitted an abstract for the symposium, and Halla Hoffer, AIA, subsequently presented on Best Practices for Providing Effective Daylight in Mid-Century Modern Structures.
on Best Practices for Providing Effective Daylight in Mid-Century Modern Structures


Background
Effective daylighting can reduce both lighting and cooling loads while improving user comfort, satisfaction, and health. Despite plentiful glass, using daylight in mid-century modern building can be challenging. Glare and uneven light distribution can cause user discomfort and pose challenges to effectively daylighting spaces. Frequently, artificial lighting is used to balance lighting in spaces over lit by the sun, negating any potential energy savings. For existing buildings, the available methods to provide effective daylighting are limited by the existing constructions and configuration. To both preserve existing structures and provide ample daylight a critical question must be answered – what are the best practices for improving daylight in existing buildings? This study provides insight to daylighting existing structures, specifically, how light can be controlled and distributed in mid-century modern buildings with plentiful glazing.

1963 Residential Tower
This study explores and analyzes how common daylighting strategies can be implemented on existing mid-century modern structures. The study focuses on a sixteen-story 1963 residential tower in Portland, Oregon, and explores how interior reflectivity, interior/exterior light shelves, shading, and glazing can impact daylight availability and distribution. The study looks at a variety of ways each strategy can be implemented and analyzes the results to determine best practices based on daylight distribution/availability, glare, lighting loads, and heating/cooling loads.
on Best Practices for Providing Effective Daylight in Mid-Century Modern Structures

Tools Used for the Specifics of Analysis
Emerging tools and technologies provide effective methods of analyzing hundreds of different daylighting simulations. Applications such as Grasshopper and Dynamo, which are visual programming environments for Rhinoceros 3D and Revit respectively, allow users to explore a variety of different design interventions and determine optimal solutions. Prior to starting the daylight analysis, we began with a “base geometry” of the existing conditions that we modeled in Rhinoceros 3D. We then developed a Grasshopper file to create daylighting interventions. For this study the interventions consisted of interior light shelves and exterior shading devices based on numerical inputs for shelf depth and height. Using Grasshopper in lieu of traditional 3D modeling allowed us to systematically test multiple variations of intervention geometry. In addition to studying how new geometries would impact daylighting we also studied how existing/new materials could impact daylighting performance.
on Best Practices for Providing Effective Daylight in Mid-Century Modern Structures

The daylighting analysis was performed using DIVA for Rhino, a plug-in that performs daylighting and energy analysis directly in Rhino. DIVA also offers several Grasshopper nodes, allowing the analysis to be controlled and managed directly in Grasshopper. For this analysis the primary results we extracted and used to measure performance included:

  • Annual Daylight: Percentage of time space receives at least 300 lux. This value can be mapped over the area under analysis. Typically, areas that receive 300 lux at least 50% of the time have the potential for daylighting.
  • Spatial Daylight Autonomy (sDA): Percentage of a space that receives 300 lux for at least 50% of the annual occupied hours. This metric provides a single number for quickly determining daylight potential. A value over 55 indicates that daylighting will be at a minimum nominally accepted by occupants. A value over 75 denotes a space where daylighting will likely be preferred by occupants.
  • Annual Sunlight Exposure (ASE): Percentage of a space that receives over 1,000 lux for at least 250 hours per year. High values indicate that the space may be overlit and cause glare/discomfort.
  • Daylight Factor: A ratio comparing light levels on the interior of the structure to the light levels on the exterior. Typically, a value under 2% indicates that the space cannot be adequately daylit, a value between 2%-5% is preferred for daylighting, and a value over 5% indicates that the space is well daylight, but may be overlit.
  • on Best Practices for Providing Effective Daylight in Mid-Century Modern Structures

    Conclusions
    Reflective interior surfaces can have a significant impact on daylight distribution.

    Without any shading there is a high probability for glare according to ASE and DF values.

    Interior light shelves alone can reduce the ASE values and the probability of glare.

    Interior light shelves alone are not as effective as exterior shading devices in reducing glare.

    A combination of reflective interior materials, interior light shelves, and exterior shading devices is the most effective method to provide adequate levels and even distribution of light.


    Written and presented by Halla Hoffer, AIA, Associate

    Abstract: Best Practices for Providing Effective Daylight in Mid-Century Modern Structures

    When we think of energy conservation standards for our built environment an increasing amount of existing buildings do not comply with today’s standards. A large portion of these existing buildings are from the mid-century modern era. Additionally, mid-century modern buildings are approaching historic status, if not already there. This status compounds finding the best way to integrate current energy standards because aesthetic impacts to a historic resource must be kept to a minimum. At PMA we believe that while challenging, it is possible to maintain the integrity of historic mid-century modern buildings while meeting new energy conservation requirements. In an effort to explore this possibility, we have submitted an abstract for an upcoming Energy Conservation in Mid-Century Modern Buildings Symposium presented jointly by APT Northwest and DOCOMOMO_Oregon.
    window-detail
    Abstract: Best Practices for Providing Effective Daylight in Mid-Century Modern Structures
    Effective daylighting can reduce both lighting and cooling loads while improving user comfort, satisfaction, and health. Despite plentiful glass, using daylight in mid-century modern building can be challenging. Glare and uneven light distribution can cause user discomfort and pose challenges to effectively daylighting spaces. Frequently, artificial lighting is used to balance lighting in spaces over lit by the sun, negating any potential energy savings. For existing buildings, the available methods to provide effective daylighting are limited by the existing constructions and configuration. To both preserve existing structures and provide ample daylight a critical question must be answered – what are the best practices for improving daylight in existing buildings? This study provides insight to daylighting existing structures, specifically, how light can be controlled and distributed in mid-century modern buildings with plentiful glazing.

    Emerging tools and technologies provide effective methods of analyzing hundreds of different daylighting simulations. Applications such as Grasshopper and Dynamo allow users to explore a variety of different design interventions and determine optimal solutions. This study explores and analyzes how common daylighting strategies can be implemented on existing mid-century modern structures. The study focuses on a 1963 residential tower in Portland, Oregon, and explores how interior reflectivity, interior/exterior light shelves, shading, and glazing can impact daylight availability and distribution. The study looks at a variety of ways each strategy can be implemented and analyzes the results to determine best practices based on daylight distribution/availability, glare, lighting loads, and heating/cooling loads.

    Speaker Bio
    Halla Hoffer, AIA
    Associate / Peter Meijer Architect, PC

    Halla is passionate about rehabilitating historic and existing architecture by integrating the latest energy technologies to maintain the structures inherent sustainability. Halla joined PMA in 2012 and was promoted to Associate in 2016. She is a specialist in energy and environmental management, as well as building science performance for civic, educational, and residential resources. Halla meets the Secretary of the Interior’s Historic Preservation Professional Qualification Standards (36 CFR Part 61).

    Post Modern Building Materials Part Two

    Post Modern Architecture: Documentation and Conservation
    At the DoCoMoMo US, Modern Matters, conference April 2013 in Sarasota, Florida, DoCoMoMo Oregon presented a debate on the merits of Michael Graves Portland Building and on the larger context of Post Modernism in general. A lively debate at the end of the presentation centered on the merits of DoCoMoMo incorporating Post Modern under the mission of the organization. In general, the support, or lack of support, for an expanded interpretation separated into two distinct viewpoints. The division represented the difference between individuals that look at Post Modernism as a historic event and individuals that still perceive Post Modernism as bad design even if executed within their own practice.
    pomo-part-two-document
    In a seemingly short period of time, a lot has transpired since 2013 regarding the conservation of Post Modernism. After a presentation on Post Modernism: Are You Prepared to Protect It during the Modern Heritage track at the October 2014 Association for Preservation Technology (APT) Conference in Quebec City, the APT Board unanimously supported the need to get ahead of the technical issues associated with preserving Post Modern architecture.

    And in December 2015, the Princeton School of Architecture, educational forum for Michael Graves, hosted the Postmodern Procedures Conference. Described in the conference outline, there was a “particular emphasis on methods of documentation and analysis, technical and narrative drawing” related to Postmodern. Post Modern works, buildings, sites, and neighborhoods, as well as art works, are recognized as important design styles deserving conservation and further understanding of construction techniques. And many iconic structures are being negatively modified (Richard Meier, Bronx Development Center, 1977) or lost entirely (James Wines, Sculpture in the Environment (SITE), Best Product Stores, circa 1976). <1>

    Post Modern design was broadly practiced in both the United States and internationally. Large and small firms were attracted to the stylistic incorporation of classical western design vocabulary in stark juxtaposition against the plain, unadorned, square box that many argued architecture had become. Post Modern architects, engineers, and material suppliers were pushing new materials and innovative construction technologies as a way to create Post Modern design elements. Continuous innovation in building skins reintroduced porcelain enamel panels, a product brought by Lustron to the building industry during the housing boom following World War II. New skins made from Glass Fibre Resin (GFR) capable of being molded in classical curves and ornamental shapes favored by Post Modern design were created. Innovations in brick technology including large scale brick panels made from a single wythe of masonry to panels whose outer face was only one half inch of masonry, or thin bricks. Improvements in resins created new wood or simulated wood products and adhesives for mounting faux finishes to structural systems. Perhaps one of the more ubiquitous new materials used in the creation of Post Modern architecture was the faux stucco product Dryvit, an Exterior Finish Insulation System (EIFS). Like porcelain enamel panels, EIFS was introduced as insulated wall assemblies as a means to improve energy performance during the world’s energy crisis of the 1970s.

    Outside of dramatic assembly failures, particularly within the EIFS industry, that provide insight into Post Modern material and assemblies, much technological information has been relegated to the historical archives. Many Post Modern buildings incorporate systems or components that are neither produced nor currently assembled in similar manners due to improvements in technology and building envelope science. Therefore, the process and method of building restoration, rehabilitation, and/or focused envelope repair could dramatically impact the exterior character of Post Modern structures.

    Focusing on one popular building skin material, Alucobond, much in use during the 1980s provides insight into the need for more research and deeper understanding of Post Modern assemblies and how to conserve and protect these systems.
    portland-building-materials-detail
    Origins & Development
    Alucobond falls into the category of aluminum composite panels (ACP) or sandwich panels. Alcan Composites & Alusuisse invented aluminum composites in 1964 and commercial production of Alucobond commenced in 1969, followed by Dibond in 1989.<2> ACPs are used in a variety of industries ranging from aerospace to construction. Perhaps the most well recognized structure using ACP is the Epcot Center’s Space Ship Earth built in 1982. However, it is the work of Richard Meier and I.M. Pei during the 1980s that brought Alucobond into the forefront as an architectural cladding material. Several different skin materials are available including aluminum, zinc, copper, titanium and stainless steel.

    Manufacturing
    The major aluminum raw ingredient, bauxite, is mined throughout the world with US sources coming from Georgia, Jamaica, and Haiti. Processing of the bauxite predominantly occurs near the ocean ports, like Corpus Christi, where the raw material is off loaded. Manufacturing starts from either solid blocks of aluminum made into coil sheets or directly from pre-manufactured coil sheets. Assembly occurs along a continuous operating line that bonds the weather (exterior) and interior faces to the core, cuts the panel to length, and produces special shapes as needed.

    Aluminum Composite Panels (ACP) are high-performance wall cladding products typically consisting of two sheets of nominal 0.020″ (0.50 mm) aluminum permanently bonded to an extruded thermoplastic core (polyethylene). Assemblies in the mid-1980s would often consist of curtain wall sub-components with sheets of aluminum on the exterior and insulation placed behind the aluminum sheets. (See fig)

    ACP can be roll formed to curve configurations for column covers, architectural bullnoses, radius-building corners and other applications requiring radius forming. This process can be accomplished with a “pyramid” roll forming machine, which consists of three motor-driven adjustable rollers. You can successfully roll form ACP using machines with minimum 2 1/2″ (64 mm) diameter rolls. The operator normally makes multiple passes of the panel through the rollers to gradually obtain the desired radius. <3>
    pomo-part-two-methods-install
    Use & Methods of Installation
    Post Modern assemblies generally assumed water would get behind the face aluminum panel and need a weep path to exit the system. Air gaps were incorporated to induce drying and allow for weeping via gravity. Wind loads were accommodated through additional brackets, or stiffeners, set behind the face panel and connected to sub-framing. Much of the technology was based on curtain wall knowledge.

    The panel systems could often be complex in the attachment to the structure, but the face panels were very similar to panels of today.

    Conservation
    Deterioration mechanism are generally associated with the system assembly and rarely are there failures in individual panels beyond cosmetic damages to the face aluminum including fading colors, scratches, and impact damages. More often incorrect fasteners were used that create galvanic reaction between the fastener and aluminum panel or inadequate fasteners were used to accommodate structural loads. The lack of design for thermal movement between panels, over the height and length of the panel façade, or along edge interfaces with sealants are also key areas of assembly failures.

    Fortunately manufactures of Alucobond, or other aluminum composite panels, are still manufacturing the panel and components making in-kind replacement a viable conservation option. Inadequate structural systems can be reinforced through disassembly of the ACP for access to the structural support. Laser scanning technology has greatly enhanced the accuracy of recording existing conditions and is critical in reproducing replacement panels. Although labor intensive, most of the systems were attached using stainless steel fasteners. Like modern curtain walls, sealant and gaskets will be removed during disassembly and require reinstallation.

    Repainting or repairing surface defects is feasible but the results generally do not achieve the same quality of finish as the factory applied coating process. And as with all repainting projects, surface preparation is critical to the long-term success of the project.

    Loss of original Post Modern aluminum composite panel systems can be reduced through an increasing interest and research into the original design intent and assembly techniques. ACP were incorporated into Post modern structures because of the simplicity to create the curved forms and for rapid pace of construction. The systems are an important part of understanding Post Modernism and worthy of Conservation.

    Marquette Plaza (historic photograph)

    Marquette Plaza (historic photograph)

    Written by Peter Meijer, AIA, NCARB, Principal

    Practices for Preserving Post Modernism

    Post Modernism, a style of architecture beginning in 1965 with the publication of Robert Venturi’s Complexity and Contradiction in Architecture and extending to 1989, has always elicited great public debate on the architectural merits of its built works perhaps best exemplified in the controversy over one of the most iconic Post Modern buildings, Michael Graves’ Public Service Building (aka the Portland Building).
    portland-building-NR-nom-pmapdx

    Whether or not Post Modern architecture is considered merely flamboyant superficial decoration or serious building design and genuine work is greatly debated. The debate, beginning a mere thirty years after the apex of the style, has arrived sooner than expected and focuses on the distinction between design and architecture. Whether or not the materials and assemblies used to construct the buildings are impermanent remain to be assessed, understood, and judged over a longer duration of time. Therefore, are material conservators and preservation technologists ready (and willing) to contribute a scientific approach and unbiased assessment to a controversial debate over a design style?

    Post Modern design was broadly practiced in both the United States and internationally. Large and small firms were attracted to the stylistic incorporation of classical western design vocabulary in stark juxtaposition against the plain, unadorned, square box that many argued architecture had become. Design magazines published examples of Post Modern buildings ranging from the academic and scholar approach by architects like the Italian Aldo Rossi to the flamboyant American style creator Philip Johnson, as well as, buildings by architects only known on local and regional levels.
    panorama

    Architects, engineers, and material suppliers were pushing new materials and innovative construction technologies as a way to create Post Modern design elements. Continuous innovation in building skins reintroduced porcelain enamel panels, a product brought by Lustron to the building industry during the housing boom following World War II. New skins made from Glass Fibre Resin (GFR) capable of being molded in classical curves and ornamental shapes favored by Post Modern design were created. Innovations in brick technology including large scale brick panels made from a single wythe of masonry to panels whose outer face was only one half inch of masonry, or thin bricks. Improvements in resins created new wood or simulated wood products and adhesives for mounting faux finishes to structural systems. Perhaps one of the more ubiquitous new materials used in the creation of Post Modern architecture was the faux stucco product Dryvit, and Exterior Finish Insulation System (EIFS). Like porcelain enamel panels, EIFS were introduced as insulated wall assemblies as a means to improve energy performance during the world’s energy crisis of the 1970s.
    141013 APT Assemblies 2

    As Post Modern buildings reach thirty and fifty years, systems and products are aging and, like all older buildings, significant investments or improvements to infrastructure systems are often needed. Compared to more recent material innovations, Post Modern building performance levels are low and some of the innovative materials resulted in long-term material failures. As it is with any building skin, often the deficiencies of one material are in combination with more robust materials or the failing components are critical to the character defining features of the Post Modern design. And when material failure is coupled to design aesthetics and those aesthetics do not offer universal appeal, questions arise as to the merits of retaining the component. But should subjective opinions about design, a very personal matter compared to one’s appreciation of art, drive decisions to preserve or demolish a building. And when the building carries international recognition as a work of architecture, or as a work that defines the Post Modernism, should more resources be given to its preservation? Does the inherent impermanence of the original materials justify an approach of non-preservation as preservation? Many Post Modern buildings incorporate systems or components that are neither produced nor currently assembled in similar manners due to improvements in technology and building envelope science. Therefore, the process and method of building envelope repair could dramatically impact the exterior character of Post Modern structures.
    Ext Ceramic tile
    Is the proper approach to retain the essence of criticism towards Post Modernism by preserving the appearance of insubstantial material installed incorrectly? Proposals to improve envelope performance of both the individual components and building systems are challenged in finding products that will both improve performance and retain the aesthetics of a Post Modern building. Like previous building styles and periods, the preservation of character defining elements that were originally inadequately or incorrectly produced or assembled has always been a source of preservation controversy. in preservation and the undersized windows of the Portland Building are defining elements of the Post Modern design. The preservation community should be prepared to participate in discussing the merits of Post Modernism. The conversation has begun.

    Written by Peter Meijer AIA, NCARB, Principal.