WHEN FIELD PERFORMANCE OF MASONRY DOES NOT CORRELATE WITH LAB TEST RESULTS

Peter R. Meijer, AIA Hali R. Knight

Disclosures

- Credit earned on completion of this program can be self-reported to CES Records for AIA members.
- This program does not include content that may be deemed or construed to be an approval or endorsement by the AIA or Portland RCI of any material of construction or any method or manner of handling, using, distributing, or design, detailing, or dealing in any material or product. Questions related to specific materials, methods, and services will be addressed at the conclusion of the presentation.
- This presentation is protected by US and International Copyright laws. Reproduction, distribution, display and use of the presentation without written permission of the speaker is prohibited.

Learning Objectives

- Translating the visual clues to theory of damage
- How to systematically test the theories
- Linking field evaluation to lab analysis
- What to do when the results are not what you expected
- Avoid leaping to a conclusion

Background

Visual Observation - Theory

Brick Manufacturing

Mapping

Lab Testing

Linking Field to the Lab

Outline

Background

Historic High School

Multi-light wood windows

Original window size & proportion

Masonry Details

Visual Observations

Brick Manufacturing

Western Clay Products - Montana

Brick Source / Brick Manufacturing

Brick Composition

- Clay chemical compound of silica, alumina and metallic oxides (color)
- 2. Water
- 3. Additives sand

Brick Manufacturing

- 1. Mining
- 2. Preparation
- 3. Molding
- 4. Drying
- 5. Firing

Brick Composition

Image: National Building Museum

Brick Products

Mapping

Extent of Problem

Extent of Problem – Clear limit

Extent of Problem – protected area

17

Extent of Problem – Original Construction

New or "Historic" Deficiencies

- Poor construction
- Material composition
- Weather
- Human intervention

Mercy Corps HQ, Portland Oregon – Historic wing

Cracking

Poor firing; Fast cooling

Roosevelt Middle School, Medford Oregon

Discoloring

Impurities

WSU, Spokane Washington

Deformities Poor Firing

Private Residence, Irvington Neighborhood, Portland Oregon
COMMON SOURCE OF EFFLORESCENCE

Salts

Efflorescence low firing Source: Carbonates - mortar Sulfates - brick Chlorides - additives

Typical: Sodium (Na) Potassium (K) Calcium (Ca)

Principal Efflorescing Salt		Most Probable Source
Calcium sulfate	CaSO4•2H2O	Brick
Sodium sulfate	Na2SO4•10H2O	Cement-brick reactions
Potassium sulfate	K2SO4	Cement- brick reactions
Calcium carbonate	CaCO3	Mortar or concrete
Sodium carbonate	Na2CO3	Mortar
Potassium carbonate	К2СО3	Mortar
Potassium chloride	КСІ	Acid Cleaning
Sodium chloride	NaCl	Sea Water
Vanadyl sulfate	VOSO4	Brick
Vanadyl chloride	VOCI2	Acid Cleaning
Manganese oxide	Mn304	Brick
Iron oxide	Fe2O3 or Fe(OH)3	Iron in contact or brick
		w ith "black core" or
		black heart
Calcium hydroxide	Ca(OH)2	Cement

Common Deficiencies

High Porosity volume relation

volume of voids : volume of the total

Affects **Permeability**

High Absorption weight relation

weight dry : weight wet

Affects Capillary suction

Common Deficiencies

Visual Observations

Exterior Visible Damage

Exterior Visible Damage

Historic Document Review: Wall Construction

National Terra Cotta Society, Terra Cotta Standard Construction, 1927

Field Testing

Field Testing – RILEM tube

Field Testing

Wall ties

Wall lets

Wall lets

Old Gym Moisture Readings Location 1

Old Gym Moisture Readings Location 2

Old Gym Roof Investigation

Old Gym Interior – During Construction

Lab Testing

BIA TABLE 4

Physical Properties in Brick Specifications

		Maximum Cold Water Absorption, %		Maximum Five-Hour Boiling Absorption, %		Maximum Saturation Coefficient	
		Average of 5 brick	Individual	Average of 5 brick	Individual	Average of 5 brick	Individual
C 62 Grade	SW	_	_	17.0	20.0	0.78	0.80
	MW	_	_	22.0	25.0	0.88	0.90
	NW	_	_	No limit	No limit	No limit	No limit

Lab Testing

ASTM C 67 – Physical Analysis of Clay Face Brick

ABSORPTION*

Unit No.	<u>1A</u>	<u>2A</u>	<u>3A</u>	<u>4A</u>	<u>5A</u>	AVG
Dimensions (as tested) Length (inches) Width (inches) Height (inches)	3.9 3.9 2.3	3.9 3.8 2.3	3.9 4.0 2.3	3.9 3.9 2.3	3.9 3.9 2.3	3.9 3.9 2.3
24-Hour Immersion (%)	7.9	6.9	8.4	5.7	8.2	7.5
5-Hour Boil (%)	9.8	9.0	10.6	7.6	9.4	9.5
Saturation Coefficient	0.81	0.77	0.80	0.76	0.79	0.79
FREEZE-THAW*						
Unit No.	<u>1B</u>	<u>2B</u>	<u>3B</u>	<u>4B</u>	<u>5B</u>	AVG
Dimensions (as tested) Length (inches) Width (inches) Height (inches)	3.9 3.9 2.3	3.9 3.8 2.3	3.9 4.0 2.3	3.9 3.9 2.3	3.9 3.9 2.3	3.9 3.9 2.3
Freeze-Thaw Durability @ 50 cycles (% loss)	0.15	0.11	0.11	0.08	0.10	0.11
Observations:	Specime	ens showed	no signs of	cracking or	breakage af	ter testing.

Lab Testing - IRA

All three samples showed silica as the binding mechanism, thus do **not** appear to have had an applied coating. The sampling fracture planes, following the surfaces in these samples, suggests the silica may have been recrystallized and hardened by subsequent atmospheric exposure

Sample 1: East/South Brick Face

Sample 3: East/South Patching Material

Masonry Coatings FTIR Evaluation

Lab Testing: Surface Salt Deposition

.... precipitated calcium

carbonate (probably calcite) and opal-hydrous silica Clay minerals were not observed. A few encapsulated frustules (shells) of diatoms and fibers from fabrics were also recovered within the deposit in a manner suggesting rain and/or service water allowed dissolved calcium and silica from the

mortar to seep laterally onto this surface and mineralize.

Lab Testing: Surface Salt Deposition

Mortar Sample

High magnification photo shows more detail on the **porosity** within the cementing matrix. This type of porosity looks as though it formed after formulation of the mortar and could be due to **dissolution of unstable granular**

components. If so, then the increased porosity of the interior of the mortar may be related to water movement through the mortar .

Mortar Sample

the total **porosity of the interior** of this mortar sample is about 3X that of the outer edge of the sample. The **reduced porosity** of the outer edge of the mortar could be a function of smearing of the **exposed joint** during finishing of the mortar. External pressure on the mortar surface would probably reduce the porosity of a thin zone.

Mortar Sample

The primary **difference** between the edge mortar and the internal mortar is related to the amount of porosity in the **cement matrix**. The edge mortar shows only about 3% porosity, whereas the interior cement has nearly 8% porosity

The lime : aggregate ratio of this sample is about 48:52, or nearly 1:1, after removing minor amounts of porosity .

Brick Sample #2

Yellow-stained K-feldspar represents remnants of patching material that entered irregularities in the brick failure surface. The brick shows scattered large voids and planar void traces that often connect larger voids. The dark spots are areas of enhanced oxidation. The sandy material at the left edge of the brick represents lime mortar, rich in volcanic sand, that fills joints between the bricks.

Brick sample #3

The brick is transected by numerous planar and irregular voids that are often interconnected and provide pathways for water percolation through the brick, as well as possible locations for freeze/thaw damage. The center of the thin section shows a zone with complex interconnected porosity (blue areas) that may have developed during firing of the clay (shrinkage cracks). The common occurrence of large planar voids contributes to an increased risk of brick failure along these surfaces.

- 1. Failure mechanism inherent in manufacturing process. Likely due to poor bonding of clay during extrusion.
- Low IRA is good and due to small diameter capillaries within brick. However, there is a correlation between small diameter capillary and susceptibility to expansion failures.
- 3. Salts in cement based mortars are leaching into the masonry over long periods of time. Upon drying, expansion of the salts within capillaries causing excessive force.
- 4. Some micro-climate freeze thaw may be occurring but is not the initial cause of failure

Conclusions

Next Steps
- 1. Control water
- 2. 100% repointing with lime based mortar
- 3. Replace all failed brick units
- 4. No sealers need a way for any remaining capillary water containing mortar salts to exit the masonry.

Thank You!

Hali Knight, PMA

halik@pmapdx.com

Peter Meijer, AIA

peterm@pmapdx.com

503.517.0283