Tag Archives: windows

Post-Modern Higher Education Facility Assessment

BACKGROUND
Construction means and methods of masonry veneer walls, and particularly flashing systems needed for protection from water intrusion of those veneer walls, was well known in the Post-Modern era (circa 1980’s – 1990’s). Many professional organizations and industries (e.g. Brick Institute of America) published technical documents as guides to proper construction of masonry veneer walls.

PMA was retained to conduct a building envelope enclosure assessment of a Post Modern masonry veneer building, over the Owner’s concern of advanced deteriorated conditions of precast window sills. The purpose of the assessment was to provide the Owner an understanding of the extent of the precast failures, whether or not any other materials were impacted by the failed conditions, and to provide an analysis of potential cause and a rough order of magnitude cost of potential mitigation. The Owner also sought an evaluation of the effectiveness of a proposal to install sheet metal over the sills to prolong the life of the precast for another forty years.
PoMo-EME-Building-Assessment-WSU
The circa 1984 Post Modern masonry veneer building links two existing historic academic classroom buildings and functions as both laboratory space and faculty offices. The building is an off-set “T” in plan with the leg of the T forming the link between the existing academic structures. A six-story faculty office tower, rises between the existing structures on the east end of the leg. The majority of the window openings occur along the bar of the T on the west elevation. The building wall cross section, from exterior to interior, is comprised of a single course of masonry veneer, a 1.5 inch air gap, an 12 inch thick cast in place concrete structural frame, a 4 inch air gap, steel stud framing, and one layer of interior gypsum board. Given the laboratory program, there is a strong interior positive air pressure that creates significant air flow within the interior air gap between the gypsum board and concrete frame. There have been no major renovations of the building since its construction.

ASSESSMENT PROCESS
PMA conducted a two-part assessment program. Part 1 consisted of a visual only assessment performed on the precast window sills, precast window headers, masonry veneer mortar joints, sealant joints, and interior gypsum board adjacent to the aluminum window sill corners. Review of the 1984 original design documents and detail book were used to augment the on-site observations.

Visual observations of the exterior face of the veneer identified the extent of the aforementioned pre-cast sill damage, previous repairs and subsequent further cracking to the pre-cast window headers, mortar popping out of the joints, sealant failure along masonry control joints, rust staining corresponding to the veneer ledgers, and weeps were not visible along the ledger locations. In addition, dirt, debris, and other exterior material had blocked the built-in aluminum window frame weep holes.

In review of the design documents, it was noted that not all details followed industry standards. In specific, flashing was absent from some details. Other details indicated an incomplete flashing system for adequate protection of veneer walls. No three dimensional drawings for indicating flashing termination were included.

Part 2 of the assessment involved creating openings in the wall system both on the exterior and the interior. The purpose of the invasive openings was to verify that the wall was constructed as designed, to confirm if additional flashing was installed, and to determine if water intrusion was contributing to the visible damage. Given the degree of deterioration observed on the exterior, target locations for wall openings were performed of the interior face of the gypsum board immediately adjacent to the interior aluminum window sills.
PoMo-EME-Building-Assessment-WSU
FINDINGS
The results of the invasive openings were significant in providing evidence of how lack of proper flashing can damage wall components while high internal positive air pressure can limit the damage to interior systems and protect veneer building envelope enclosure systems from extensive water intrusion.

The as‐built conditions, in some locations, varied considerably from the design details. No flashing was installed below the pre-cast window sills and no flashing was installed along the interface between the vertical window system and veneer walls. An outer layer of backer rod behind the vertical sealant joint and inner layer of backer rod behind the gypsum board were the only line of defense against water intrusion. Adequate and substantial copper flashing protected the steel ledger but all rope weeps (a common Post-Modern era construction material for veneer walls) were installed at proper spacing but did not extend to the exterior thereby trapping water against the ledger angles. Beyond the initial outer layer of defense against water intrusion (sealant system, veneer wall, and aluminum window system) there is no back up / secondary protection in place.

No interior finish systems appear to be damaged. The lack of adequate flashing does not currently create interior water intrusion. Current water intrusion is isolated to materials outward of the concrete structural frame. The lack of damage to the interior can be attributed to the high positive air pressure which in turn creates high volume of air flow within the interior air gap inward of the concrete frame. This positive pressure acts as a mitigating element against bulk water intrusion. Combined with the thickness of the concrete structural wall (approximately 12 inches), water intrusion is isolated to the masonry veneer system. Even at the aluminum window frame interface, the two layer of backer rod are sufficient to block water intrusion with a positive air pressure environment.
PoMo-EME-Building-Assessment-WSU
Recently installed new roof coping provided the means to mitigate the lack of through wall flashing along the parapet and greatly reduced water intrusion in the veneer wall air cavity. Given the age of the building, and visual observations, damage has already occurred prior to the new roof coping. In addition, the lack of flashing increases the need to routinely replace deteriorated sealant systems and maintain weeps on both the veneer wall and the aluminum window system. The extensive existing damage to the pre-cast components will require full replacement. During replacement, further assessment of structural components can be made and adequate flashing and weeps can be installed. The pre-cast replacement process may also serve as an opportunity to mock up potential secondary defense systems at the aluminum window frame/veneer wall interfaces. At this time the laboratory use requiring positive air pressure is protecting the interior. However, should the use of the building coincide with lowering of the pressure and air flow, a secondary means to prevent water intrusion will be required. For now, the large amount of air flow with in the cavity provides sufficient temperature and flow volume to adequately dry the cavity space.

Veneer systems, especially those constructed during the Post-Modern era require attention to the flashing details and corollary protective systems like sealant joints, weep holes, and preventive maintenance procedures to prolong the life of the structure and reduce the need for substantial repairs.


Written by Peter Meijer, AIA, NCARB / Principal, and PMA architectural staff.

Recycling Steel Windows: Is there a process?

PMA is leading the discussion to find a process to recycle steel windows.

Through our work of existing building restoration, PMA often encounters older properties with original steel windows. And more likely than not, we receive a request from the property Owner to upgrade those existing steel windows. Rarely does the request result from degradation or damage of the window system. Most often the Owners desire thermal and energy improvements.In order to achieve the desired improvements, while meeting code upgrades and other tenant improvements, replacement of the original steel windows is often the option of choice. And that is when the difficulty of recycling existing steel windows begins.
existing-steel-windows
STEEL WINDOWS 1920s – 1940s
In the 1920s through 1940s, there were a number of local and national steel window manufacturers. Steel windows were the preferred window system in both commercial and industrial buildings because of the simplicity of components, ease of installation, availability of product, size of window openings, and affordability of the product. Steel windows from every manufacturer typically used the same readily available extruded steel bar profiles: the “T” & “h” cross sections. The entire window assembly is characteristically composed of three materials: the frame, the glass, and glazing compound. Operable windows have added hardware. The steel sections of historic windows are still in use on today’s steel windows.

With such sparsity of components, and availability of an industrial steel recycling industry, why are steel windows not recycled? The answer is hazardous materials: lead paint and asbestos containing putty. Creating clean steel for recycling involves a two-step process. Once removed from the building, the steel windows must have the glass and glazing removed and the paint removed. Both the glazing and the paint must be disposed following hazardous material regulations. And that is the primary block to recycling. There are very few business established to remove hazardous waste from windows.
typical-steel-windows
CURRENT INDUSTRIAL PRACTICES
However, if we look at two current industrial practices, wood window restoration and carpet tile manufacturing, there is a basis for introduction of steel window recycling. Wood window restoration processes include the removal of lead paint and asbestos containing glazing putty. The industry has the capacity to use dipping tanks to remove the paint and putty on a large quantity of windows and then properly dispose of the waste. Modify the existing process to accommodate steel windows could be readily achievable. Manufacturers of carpet tiles revolutionized the industry by owning the recycling process from cradle to grave. Carpet tile manufacturers take back the tiles they manufactured for recycling and reuse. Steel window manufactures could do the same.

Currently steel window manufacturers purchase the cross sections from steel producers and do not become involved in the life span of the products they produce. If the steel window industry reassessed and evaluated their role in sustainable products, an opportunity to recycle existing steel windows would become available.

Here at Peter Meijer Architect, we are committed to lead the discussion with the design, build, and manufacturing community to find an economical solution to recycling steel windows. We believe that existing industries can be adapted to keep steel windows out of the waste stream and better utilize existing resources for reuse.

Written by Peter Meijer, AIA, NCARB / Principal

studio-building-pmapdx-004

Studio Building Window Replacement

PMA provided planning and building science services for TMT Development’s project at the Studio Building in downtown Portland. The Studio Building is a twentieth century Baroque-style building built in 1927 by Ellison-White Conservatory and designed by locally renowned architect Luther Lee Dougan. Over time, the Studio Building has undergone multiple changes including new openings (1940), the addition of a new marquee (1956), and the construction of a new front entrance (2002) to name a few.

PMA lead the project teams Type III Design Review application for the replacement of windows on the building. After assessing the existing 192 historic steel windows, we recommended replacement windows to match the historic windows in style and size, and to fit within the existing window openings on all elevations. Drawings created during the assessment were used as part of the Type III Design Review application, as part of the pre-hearing review packet, and as part of the power-point presentation during the hearing in front of the Design Commission.

joseph-vance-building-assessment-001

Joseph Vance Building

At the request of Jonathan Rose Companies/Kidder Mathews, Peter Meijer Architect, PC, (PMA) was retained to provide a limited exterior condition assessment of the terra cotta veneer at the Joseph Vance Building in Seattle, WA. PMA was initially contracted to observe repair work being performed by Pioneer Masonry Restoration (Pioneer). While onsite several significant deficiencies were noted on the west elevation. PMA recommended a complete assessment of the west elevation to understand the source of the observed deficiencies. Exterior observations were conducted from swing stage equipment located on the west elevation of the building. The south elevation was observed during review of Pioneer’s repair work and is discussed in the following report, however detailed observations on the elevation were not included in this scope of work. The short east elevation was also not assessed as part of this investigation. The purpose of the assessment was to provide Jonathan Rose Companies/Kidder Mathews with an understanding of the existing conditions, potential causes of terra cotta deterioration and repair recommendations.

The Joseph Vance Building was built in 1929 .The building is fourteen stories high and constructed with a concrete structure and concrete infill between structural columns. The west and south elevations have a decorative terra cotta veneer facade. On the east elevation the primary material is painted concrete/stucco, with a small section of terra cotta veneer along the southern most portion of the structure. The north elevation is entirely painted concrete/stucco.

How to Improve Energy Efficiency in Historic Buildings

As historic architects we find window replacement projects to be particularly challenging — removing original materials from a structure can fundamentally change the design aesthetic. Our built environment must evolve to support more sustainable living, but finding the best way to achieve this goal for historic structures, while minimizing any aesthetic impacts, is an ongoing challenge.

When looking to improve energy performance the first inclination is often to replace the component with the lowest thermal resistance – the windows. Single pane historic windows provide minimal thermal resistance and contribute to heat loss through the building envelope. But is window replacement really the best option for reducing the carbon footprint of a historic building – how does it compare to other strategies?

energy-analysis-West ElevationPMA recently performed an energy analysis study to answer that question. The project was to provide quantitative data on the energy savings associated with window replacement versus insulating exterior walls. We choose to study a structure on the brink of historic status – a 1960’s multi-story residential structure with large character defining view windows. The structure is composed of concrete walls, beams, floors, and columns with single pane aluminum windows. The existing building has approximately 36% glazing and no insulation.

The analysis we performed compared seven retrofit strategies ranging from minimal code compliance to super insulated walls and windows. Details on the specific constructions, r-values, and glazing properties are outlined below.

Construction Types Chart A wide range of constructions were chosen in order to see the full range of possible results. Future studies may focus on more refined material choices and a narrower set of parameters. The analysis was run in Autodesk Green Building Studio which is an excellent tool to perform basic energy models. While GBS does not allow for complex simulations it can quickly and accurately compare a variety of different design alternatives.

We chose to look at four different indicators to compare the results:
• Energy Use Intensity (EUI) indicates how much energy is used per square foot per year and is a very common way of comparing how different buildings perform.
• The quantity of electricity used per year indicates how much energy is used on cooling loads, heating loads, interior loads, and lights.
• The quantity of fuel used per year indicates primarily energy used for heating.
• The annual peak demand indicates the maximum amount of energy used at any single time over the course of a year.

We assessed the data in terms of percentage improvement over the Existing scenario. The charts below provide a comparison of the seven different retrofits.

Results Chart

The Results
What is intriguing in the results is the large difference in performance within the glazing retrofits options between the Double Pane LoE Glazing and the Triple Pane Glazing. While the Double Pane Glazing provides a notable improvement to the building’s energy performance it is still surpassed by all of the other retrofits. Conversely the Triple Pane Glazing far out performs all of the insulation retrofit strategies. The range between the two glazing retrofits indicates that new windows have the potential to have a substantial impact on energy performance. Unfortunately triple pane glazing is typically cost prohibitive and the LoE coatings applied to achieve maximum efficiency are incongruent with historic buildings. As technologies change and improve it is possible that these obstacles will be overcome – potentially making window replacement for energy efficiency purposes a more viable option.

window-detailWith current technologies the results indicate that adding insulation to a building has the most cost effective impact on energy performance. Installing new insulation is typically less expensive than window replacement and the results of this study show that Code Compliant (R-~7) insulation can have a significant impact on overall energy usage, outperforming Double Pane window replacement. Interestingly, the results also indicate that a High Insulation (R-25) retrofit performs better than a Combined Retrofit with Code Compliant Insulation (R-~7) and Double Pane Glass.

The results clearly indicate that adding insulation is an excellent way to improve energy performance without impacting the exterior façade of a historic building. Like any retrofit, insulation poses its own challenges: can it be installed on the interior without affecting historic finishes? Will changes in the temperature of the wall cause deterioration?, etc. Conversely, there are instances where window replacement is the right choice (when the existing windows have reached the end of their lifespan) and in this instance choosing a double pane glazing option can improve energy performance. In most cases, if you are looking to improve the energy performance of your building – it is more effective to explore insulation retrofit options rather than window replacement.

Written by Halla Hoffer, Architect I

Steps to Replacing Historic Wood Windows

QAHSC-landmarks-review-pmapdxOur first choice, and ethical preference, is to retain historic wood windows. Repaired and maintained wood windows constructed of old growth lumber will outlast any modern alternative. We advocate strongly for a process and philosophy that seriously evaluates retaining original material. The best approach compares long-term costs, embodied energy, and cultural importance relative to the same criteria for new replacement material.

But what do you do when the comparative process favors new material and replacement becomes the option of choice? And how do you gain jurisdictional and historic approval for removing character defining features from a historic property? Correct research, documentation, presentation, and material selection are the key factors to successfully replace historic wood windows.

Lack of maintenance is rarely accepted as a justifiable rationale for window replacement. Arguments for window replacement based on peeling paint, surface tracking of the wood, and/or glazing putty failure are typically countered with comments that benign neglect is a conscious act and straight forward maintenance will reverse the deterioration and deficiencies noted. A better strategy is to base replacement rational on existing significant deficiencies that require financial investment and resource allocation to repair the deficiencies.

QAHSC-landmarks-review-windows-pmapdxMost existing, older properties have had more than one owner. Research into original design documents, major rehabilitation projects, building permit requests, and other documents provide insight into processes that might have replaced original material. The removal and replacement of non-original material is justifiable and acceptable rationale.

Documentation by means of an on-site, window by window survey is the only method that will yield quantifiable data regarding the physical condition of existing wood windows. The resulting comparative data is critical for structuring an argument in favor of replacement. The field observations also provide invaluable information pertaining to the means and methods of construction and conversely deconstructing, or removing, the windows. Understanding wood window construction is important to understanding how wood window fail. Source documents like the Association of Preservation Technology’s Window Rehabilitation Guide for Historic Buildings (1997) and the National Park Service Preservation Briefs: 9, The Repair of Historic Wooden Windows provide exploded diagrams of both wood window construction and typical failure locations. These locations generally include the sash mortise and tenon joints, the exterior stops, and horizontal rails. The field assessment will need to document the quantity, location, and extent of any failed components.

QAHSC-landmarks-review-pmapdxAfter a thorough evaluation and understanding of the existing wood windows, the next decision is to choose a replacement product. In-kind replacement,(i.e. wood window for wood window; true divided lites for true divided lites, matching pane divisions, etc.) is preferred. When the replacement window is virtually identical to the historic window, it is hard to say no. Absent exact replacement, the visual qualities exhibited by the cross section profiles, the sash height and width, and the proportion of wood to glazing, are the most important attributes to match. Appearance from the exterior will trump appearance from the interior during a historic review approval process.

How the research findings, existing conditions, and replacement products are presented is fundamental to a successful request to replace historic wood windows. Agencies and commissions with jurisdictional review and approval authority require clear, methodical, and linear processes to understand the research, findings, and selection process. Collating the field data using charts and graphs, including graphic representation of previously altered windows, and defining the quantity of failed components will assist a decision in favor or replacement.

QAHSC-window-flashing-pmapdxWhen an opportunity to retain original fabric/windows is available, the opportunity should be incorporated into the work. Even retaining as little as 20% of historic fabric will increase the likelihood of approval for replacement of the remaining components. The retention of historic fabric also allows successive generations to better understand the history and changes of an existing property.

Written by Peter Meijer AIA, NCARB, Principal.