Tag Archives: architecture

Means and Methods of Architectural Design

On a recent trip to Italy, I couldn’t help but contemplate the progression of architecture styles across time and contemporary architecture’s divergence/evolution from past practice. Architecture, alongside art, has long reflected contemporary trends, culture, and politics. More than ever, contemporary architecture reflects our societies’ obsession with technology, efficiency, and value-engineering. As I stood within the walls of Carlos Scarpa’s Brion Cemetery, taking in the attention to detail and crafted experience of the space, I wondered if architecture would ever return to this level of craft, detail, and whimsy. It is hard to image Carlos Scarpa’s intricate and unique detail being created in the architectural world today. From my perception, the art of architecture on a mass scale is being transformed to a systems and science of architecture where unique, non-functioning, artful details are being abandoned as superfluous and cost prohibited.
Means-Methods-Architectural-Design-001
A Paradigm Shift
Great works of historic architecture were conceived by pen and paper as artistic minds envisioned each space on iterative gestural pages; translated from enigmas to sketches to drawings to reality. Materials were crafted by hand and details seamlessly integrated within each trade’s identity. Today’s paradigm shift toward Building Information Modeling (BIM), factory production, and intelligent building systems have transformed the means and methods of the tradition discipline. Traditional detailing known by each trade has been lost to time as architects and builders move to new systems. The design process has continued to evolve and transitioned to computer based iterative processes. This creates a new dialog where the computer program itself has an influence over the design.

Architectural contemporary styles are named for the processes in which they were designed, such as Diagramism, Revitism, Scriptism, and Subdivisionism. These processes include designing in CAD, BIM, and other 3D programs, which can predominantly drive the design style and form. Architects and designers need to be aware of how architectural design is affected by each program’s restrictions and work flow tendencies. There can be a detachment for the final goal of the built form as we go down the virtual rabbit hole. The benefit of 3D modeling is that it allows designers to more fully comprehend form and its intersection with the overall building systems. However, if the design process is pushed into modeling without a strong concept, the objective can be easily replaced with creating a well-organized and systematic Building Information Modeling, instead of holistic architectural design.
Means-Methods-Architectural-Design-002
Architectural Design and BIM
BIM designs are based primarily of component systems that create efficient, intelligent, and informative models. Designers can easily draw schedules and quantities that greatly speed up processes, however in the design process, focusing on components can also create a disassociation from the whole building and design concept. The translation of an artistic gesture of a material or space can easily be lost in the clunky world of 3D representation and restrictions.

I am certainly a proponent of BIM, but I am also an advocate of preserving the art and craft of architecture. BIM is a terrific for understanding buildings in their 3D form as a composition of components and systems. BIM’s intelligence allows for continued updating of schedules and quantities, allowing for time efficiency. However, these components are limited to the software’s modeling options and the designer’s skill at modeling. The virtual world is still not an accurate representation of all the properties of building materials or their structural capabilities. In other words, BIM cannot be a means from the start to the end. Our profession is obligated to continue to push for high design standards and syndicate and extrapolate. I continue to see architecture that either allows BIM to drive design or prioritizes efficiency and value-engineering over quality of design. As BIM evolves within architecture as a means to design, I hope it can assist designers in their creative process and challenge our profession’s boundaries.

Written by Hali Knight, Architect I

Sources
Prospect Magazine
Archdaily
DI

Post Modern Building Materials Part Two

Post Modern Architecture: Documentation and Conservation
At the DoCoMoMo US, Modern Matters, conference April 2013 in Sarasota, Florida, DoCoMoMo Oregon presented a debate on the merits of Michael Graves Portland Building and on the larger context of Post Modernism in general. A lively debate at the end of the presentation centered on the merits of DoCoMoMo incorporating Post Modern under the mission of the organization. In general, the support, or lack of support, for an expanded interpretation separated into two distinct viewpoints. The division represented the difference between individuals that look at Post Modernism as a historic event and individuals that still perceive Post Modernism as bad design even if executed within their own practice.
pomo-part-two-document
In a seemingly short period of time, a lot has transpired since 2013 regarding the conservation of Post Modernism. After a presentation on Post Modernism: Are You Prepared to Protect It during the Modern Heritage track at the October 2014 Association for Preservation Technology (APT) Conference in Quebec City, the APT Board unanimously supported the need to get ahead of the technical issues associated with preserving Post Modern architecture.

And in December 2015, the Princeton School of Architecture, educational forum for Michael Graves, hosted the Postmodern Procedures Conference. Described in the conference outline, there was a “particular emphasis on methods of documentation and analysis, technical and narrative drawing” related to Postmodern. Post Modern works, buildings, sites, and neighborhoods, as well as art works, are recognized as important design styles deserving conservation and further understanding of construction techniques. And many iconic structures are being negatively modified (Richard Meier, Bronx Development Center, 1977) or lost entirely (James Wines, Sculpture in the Environment (SITE), Best Product Stores, circa 1976). <1>

Post Modern design was broadly practiced in both the United States and internationally. Large and small firms were attracted to the stylistic incorporation of classical western design vocabulary in stark juxtaposition against the plain, unadorned, square box that many argued architecture had become. Post Modern architects, engineers, and material suppliers were pushing new materials and innovative construction technologies as a way to create Post Modern design elements. Continuous innovation in building skins reintroduced porcelain enamel panels, a product brought by Lustron to the building industry during the housing boom following World War II. New skins made from Glass Fibre Resin (GFR) capable of being molded in classical curves and ornamental shapes favored by Post Modern design were created. Innovations in brick technology including large scale brick panels made from a single wythe of masonry to panels whose outer face was only one half inch of masonry, or thin bricks. Improvements in resins created new wood or simulated wood products and adhesives for mounting faux finishes to structural systems. Perhaps one of the more ubiquitous new materials used in the creation of Post Modern architecture was the faux stucco product Dryvit, an Exterior Finish Insulation System (EIFS). Like porcelain enamel panels, EIFS was introduced as insulated wall assemblies as a means to improve energy performance during the world’s energy crisis of the 1970s.

Outside of dramatic assembly failures, particularly within the EIFS industry, that provide insight into Post Modern material and assemblies, much technological information has been relegated to the historical archives. Many Post Modern buildings incorporate systems or components that are neither produced nor currently assembled in similar manners due to improvements in technology and building envelope science. Therefore, the process and method of building restoration, rehabilitation, and/or focused envelope repair could dramatically impact the exterior character of Post Modern structures.

Focusing on one popular building skin material, Alucobond, much in use during the 1980s provides insight into the need for more research and deeper understanding of Post Modern assemblies and how to conserve and protect these systems.
portland-building-materials-detail
Origins & Development
Alucobond falls into the category of aluminum composite panels (ACP) or sandwich panels. Alcan Composites & Alusuisse invented aluminum composites in 1964 and commercial production of Alucobond commenced in 1969, followed by Dibond in 1989.<2> ACPs are used in a variety of industries ranging from aerospace to construction. Perhaps the most well recognized structure using ACP is the Epcot Center’s Space Ship Earth built in 1982. However, it is the work of Richard Meier and I.M. Pei during the 1980s that brought Alucobond into the forefront as an architectural cladding material. Several different skin materials are available including aluminum, zinc, copper, titanium and stainless steel.

Manufacturing
The major aluminum raw ingredient, bauxite, is mined throughout the world with US sources coming from Georgia, Jamaica, and Haiti. Processing of the bauxite predominantly occurs near the ocean ports, like Corpus Christi, where the raw material is off loaded. Manufacturing starts from either solid blocks of aluminum made into coil sheets or directly from pre-manufactured coil sheets. Assembly occurs along a continuous operating line that bonds the weather (exterior) and interior faces to the core, cuts the panel to length, and produces special shapes as needed.

Aluminum Composite Panels (ACP) are high-performance wall cladding products typically consisting of two sheets of nominal 0.020″ (0.50 mm) aluminum permanently bonded to an extruded thermoplastic core (polyethylene). Assemblies in the mid-1980s would often consist of curtain wall sub-components with sheets of aluminum on the exterior and insulation placed behind the aluminum sheets. (See fig)

ACP can be roll formed to curve configurations for column covers, architectural bullnoses, radius-building corners and other applications requiring radius forming. This process can be accomplished with a “pyramid” roll forming machine, which consists of three motor-driven adjustable rollers. You can successfully roll form ACP using machines with minimum 2 1/2″ (64 mm) diameter rolls. The operator normally makes multiple passes of the panel through the rollers to gradually obtain the desired radius. <3>
pomo-part-two-methods-install
Use & Methods of Installation
Post Modern assemblies generally assumed water would get behind the face aluminum panel and need a weep path to exit the system. Air gaps were incorporated to induce drying and allow for weeping via gravity. Wind loads were accommodated through additional brackets, or stiffeners, set behind the face panel and connected to sub-framing. Much of the technology was based on curtain wall knowledge.

The panel systems could often be complex in the attachment to the structure, but the face panels were very similar to panels of today.

Conservation
Deterioration mechanism are generally associated with the system assembly and rarely are there failures in individual panels beyond cosmetic damages to the face aluminum including fading colors, scratches, and impact damages. More often incorrect fasteners were used that create galvanic reaction between the fastener and aluminum panel or inadequate fasteners were used to accommodate structural loads. The lack of design for thermal movement between panels, over the height and length of the panel façade, or along edge interfaces with sealants are also key areas of assembly failures.

Fortunately manufactures of Alucobond, or other aluminum composite panels, are still manufacturing the panel and components making in-kind replacement a viable conservation option. Inadequate structural systems can be reinforced through disassembly of the ACP for access to the structural support. Laser scanning technology has greatly enhanced the accuracy of recording existing conditions and is critical in reproducing replacement panels. Although labor intensive, most of the systems were attached using stainless steel fasteners. Like modern curtain walls, sealant and gaskets will be removed during disassembly and require reinstallation.

Repainting or repairing surface defects is feasible but the results generally do not achieve the same quality of finish as the factory applied coating process. And as with all repainting projects, surface preparation is critical to the long-term success of the project.

Loss of original Post Modern aluminum composite panel systems can be reduced through an increasing interest and research into the original design intent and assembly techniques. ACP were incorporated into Post modern structures because of the simplicity to create the curved forms and for rapid pace of construction. The systems are an important part of understanding Post Modernism and worthy of Conservation.

Marquette Plaza (historic photograph)

Marquette Plaza (historic photograph)

Written by Peter Meijer, AIA, NCARB, Principal

Preservation and Ballparks: A Survival Guide for the
American Ballpark

Since the creation of the ballpark in 1862 and the much later inception of the National Preservation Act of 1966, preservation and ballparks have not necessarily been synonymous with each other, especially when referring to those used for Major League Baseball. To further the point, of the 109 stadiums, ballparks, or fields used by Major League Baseball since 1876, only 43 exist today, and of those 43, only 9 are 50 years of age or older. This does not mean, however, that only 9 Major League Baseball stadiums have ever reached or even surpassed 50 years of age; it just means that meeting one of the most fundamental benchmarks in preservation does not guarantee survival. For that matter, neither does being listed on the National Register of Historic Places. Although preservation is practiced and taught through the lens of the National Park Service’s preservation standards, there are multiple factors that contribute to the preservation of a historic resource. Like anything, there is rarely, if ever, a single answer to solving a complex issue. This leaves the question, if not the existing preservation framework, what factors do contribute to the preservation of historic resources, specifically historic major league ballparks?
baseball-historic-stadiums-pmapdx
Though an intriguing question, it will not be completely answered in this observational study, given the number of variables for each resource. However, by analyzing the 9 existing Major League Baseball stadiums that have survived to reach the age of 50, Fenway Park (1912), Wrigley Field (1914), Los Angeles Memorial Coliseum (1923), RFK Stadium (1961), Hiram Bithorn Stadium (1962), Dodgers Stadium (1964), The Astrodome (1944), Angel Stadium (1966), and the Oakland Coliseum (1966), this study begins to quantify what factors have contributed to their prolonged survival and identifies two common elements: function and adaptability. This study also provides information that can be useful in steering and focusing preservation efforts toward the successful preservation of baseball stadiums, ballparks, and fields. Nevertheless, it should also be understood that, though the findings of this study identify patters of preservation, these patterns should not be used to determine historic significance or integrity.

Elements of Survival
The first and most obvious element of survival for the 9 historic Major League Baseball stadiums is their function. No function, no purpose. Easily said and just as easily true. Of the 9 existing historic ballparks, 8 are currently being use by a Major League Baseball franchise or other sports program, as they were originally intended. The Astrodome is the only ballpark of the 9 that is currently vacant. With the exception of the Astrodome, which is pending rehabilitation, 8 out of 9 (88.9%) of all historic ballparks are functional. Whether through baseball, football, or soccer, keeping ballparks functional will not only contribute to their purpose for existence, but can keep them extant. In cases where Major League Baseball franchises or other sports programs build new stadiums, relocate, or disband, it is critical that the existing or remaining ballpark, stadium, or field finds a function, preferably one that utilizes its original design intent. Without it, its odds of demolition are significantly increased, regardless of its age, history, or cultural importance.

Ballpark Styles
Another common element of survival that these historic ballparks share is their ability to adapt to an evolving sport and culture through alterations. Though this use of alteration, in terms of renovation or rehabilitation, is a common standard within the National Park Service’s preservation rubric, ballparks are unlike other architectural forms because they are in a constant discourse with the sport of baseball, which has historically contributed to their continued evolution. Out of this relationship, four primary ballpark styles were created: The Pre-Classic (1871-1909), Classic (1909-1953), Modern (1953-1992), and Retro (1992–present). These styles, from the modest, wooden, Pre-Classic ballpark to the predominant, contemporary, Retro style ballpark, are equally representative of the sport and our society during their time of construction, thus contributing to their demolition when both evolved. Given this inherent fate, ballpark demolition is as common to the sport as superstition. So common, that an average of 16 ballparks have been demolished during each stylistic trend. However, those that have defied this characteristic have done so through their ability to mend both sport and cultural trend by adaptation.

Ballpark Alterations
After analyzing the histories of each of the 9 historic ballparks, 100% have undergone some form of alteration in pursuit of modernity. The most common alteration made was the addition or renovation of seating. The least common alterations made were the addition of kids’ play areas and the addition or renovation of dugouts. These statistics are expanded in the Historic Ballpark Alteration Chart. This chart shows past, undergoing, and projected alterations to each of the 9 historic ballparks observed in this study. Depending on age, these alterations, which include renovations and additions, may have been made to the same ballpark more than once.
Historic-Ballpark-Alteration-Chart_PMAPDX
Overall, these alterations have unquestionably contributed to the extended lifespan of each of these ballparks. This has allowed 5 of them to obtain historic status, either nationally or locally, one of which used Federal Historic Preservation Tax Credits. More importantly, they all have retained their function and purpose, while not all alterations made to these ballparks align with the National Park Service’s preservation standards.

Titled “Preservation and Ballparks: A Survival Guide for the American Ballpark,” this study is meant to propel the discussion of the question: what factors contribute to the preservation of major league ballparks? Other factors that need further examination to truly understand the holistic approach to preserving ballparks are: 1) the financial impacts of preserving, redeveloping, or repurposing a ballpark; 2) the impact that a ballpark has on team success, franchise revenue, location and fan base; 3) and local preservation laws and ordinances for historic resources. Additionally, for further statistical analysis, this study would need a larger sample size, which includes historic minor league ballparks.

Overall, this study reinforces some of the most important and fundamentally crucial elements in preservation: function and adaptability. Though the findings made in this study are not new to the preservation field, the perspective of what elements contribute to preservation of a single utilitarian form, such as the ballpark, is. More importantly, this study also reinforces the necessity for change and growth for all structures, even if falling outside of national preservation standards. This does not mean that with change comes demolition, but that change should be embraced, as it has been for these 9 major league ballparks.

Written by Brandon J. Grilc, Preservation Specialist

Bibliography
Ballparks of Baseball. Dodgers Stadium. http://www.ballparksofbaseball.com/nl/DodgerStadium.htm.

Ballparks of Baseball. RFK Stadium. http://www.ballparksofbaseball.com/past/RFKStadium.htm.

Charleton, James H. Los Angeles Memorial Coliseum National Register of Historic Places Nomination Form. Washington D.C.: National Park Service, 1984.

Chicago Cubs. History. http://chicago.cubs.mlb.com/chc/ballpark/information/index.jsp?content=history.

Chicago Cubs. Construction Timeline. http://cubs.mlb.com/chc/restore-wrigley/updates/timeline/.

Cook, Murray. “Murray Cook’s Field & Ballpark Blog,” Hiram Bithorn Stadium Upgrades for 2010 (blog), May 26, 2010. http://groundskeeper.mlblogs.com/?s=hiram+bithorn+stadium.

Donovan, Leslie, Rachel Consolloy Nugent, Erika Tarlin, and Betsy Friedberg. Fenway Park National Register of Historic Places Nomination Form. Washington D.C.: National Park Service, 2012.

Georgatos Dennis. “Renovations Reshaping Oakland Coliseum.” http://www.apnewsarchive.com/1996/Renovations-Reshaping-Oakland-Coliseum/id-d9a080536647dd0a356dcbd51efd4095.

Grilc, Brandon J. “Stealing Home: How American Society Preserves Major League Baseball Stadiums, Ballparks, & Fields.” Thesis., University of Oregon, 2014.

Los Angeles Angels of Anaheim. Angel Stadium History. http://losangeles.angels.mlb.com/ana/ballpark/information/index.jsp?content=history.

Los Angeles Dodgers. Dodger Stadium History. http://losangeles.dodgers.mlb.com/la/ballpark/information/index.jsp?content=history.

Los Angeles Dodgers. Dodger Stadium Upgrades. http://losangeles.dodgers.mlb.com/la/ballpark/stadium_upgrades/.

Melendez, Sara T. Aponte. Hiram Bithorn Municipal Stadium National Register of Historic Places Nomination Form. Washington D.C.: National Park Service, 2013.

Powell, Ted. The Astrodome National Register of Historic Places Nomination Form. Washington D.C.: National Park Service, 2013.

Sillcox, Scott. Heritage Uniforms and Jerseys: A celebration of historic NFL, MLB, NHL, NCAA football and CFL uniforms and stadiums/ballparks/arenas. http://blog.heritagesportsart.com/

University of Southern California. The Coliseum Renovation. http://coliseumrenovation.com/overview.

Using Revit for Historic Architecture

Revit is used widely for designing new architecture and for documentation of existing structures. When first looking at Revit one may assume that it is tailored for use with contemporary designs. The default ‘Families’ (the term Revit uses to describe all types of elements from furniture to windows, doors, annotation symbols, wall constructions, etc.) are all generic to new construction. Despite the pre-set generic components, Revit’s strength lies in the ability to create custom ‘Families’ and its capability of tracking both three dimensional design as well as linked information about components. When used correctly Revit can be a powerful tool for building assessment and historic renovation. At PMA we have found several tools in Revit that can help us accurately show historic elements, track information about conditions, show repair strategies, and graphically present data.
Revit-RecordingData
When working on historic structures it can be very important to accurately show existing elements. We often need to indicate exact pieces of terra cotta that require replacement or how a stone entry stair is configured so that the cost for replacement stones can be correctly estimated. We frequently create custom ‘Families’ to accurately show historic detailing. ‘Families’ of all types can be created to refine a model and add historic detail. Some of the common custom elements that we create include windows with historically accurate profiles, stacked walls that let us show terra cotta banding and differentiation in materials/wall thicknesses, complex historic roof structures, and custom patterns that match existing stonework. By adapting the generic Revit ‘Families’ and creating our own we are able to accurately represent historic features and structures.

Capabilities
One of Revit’s most useful capabilities is its ability to record and track information about building components. Unlike earlier drafting and 3D modeling applications, Revit can store information about material finishes, specification references, and much more! In Revit you can assign ‘Parameters’ to ‘Families’. ‘Parameters’ are used in a variety of different ways – but one of the most useful we’ve found is their ability to track the condition of specific building elements. For example, when we perform window surveys we can assign ‘Parameters’ to all of the modeled windows that describe the typical deficiencies observed. For each individual unit we can then record what deficiencies were discovered in the field. Once all of the information has been added to the Revit model you can create schedules in Revit to describe the condition of each window unit and total quantities. The information can be extracted from Revit and into spreadsheet software to analyze the data, present trends, and identify repair scopes for individual units.
Revit-Filters
Using Fliter’s
Revit’s ‘Filter’s’ function is another tool that we use in conjunction with ‘Parameters’ to better understand and present information that we’ve recorded in the field. Filters allow one to alter the graphics for components based on their ‘Parameter’ values. For example we commonly use ‘Filters’ to graphically show the condition of a building’s windows after a survey. We do this by creating a condition ‘Parameter’ where a value can be assigned to each window, for example, good, moderate, and poor. We can then use filters to highlight all of the windows in good condition green, those in moderate condition yellow, and those in poor condition red. Unlike a window schedule which may require some analysis – the color coded elevations Revit can create with ‘Filters’ are easy to understand and an excellent tool for presentations.

At PMA we have found Revit to be an invaluable tool that we use day to day for a variety of uses including 3D modeling, displaying point clouds, rendering, tracking information, and presenting data. Revit is a capable tool and with a little creativity one can tailor the application to complex historic projects. The ability to create complex custom ‘Families’ that track data about the structure make it possible for our office to efficiently record, analyze, and present date we observe in the field – bringing projects all the way through development, documentation of construction documents, and construction itself.

Review our ongoing building envelope project that utilizes Revit.

Revit-PresentingResults


Written By Halla Hoffer, Associate, Architect I

Portland’s Architectural Heritage from the Recent Past

In March 2015, we wrote about PDX Post Modern and Mid-Century Modern architecture, which to our eyes was being referenced by local architectural firms for their new designs located at the Burnside Bridgehead and elsewhere. A year later and the City of Portland is continuing to build, build, build especially around the Burnside Bridgehead. In addition, cries for the demolition of a Post Modern icon of architecture: Michael Grave’s designed, Portland Public Service Building, have turned into a proposed $200 million design-build project. Has Portland come to appreciate its architectural heritage from the recent past?

PoMo-Portland

Portland Building, PacWest Center, Koin Tower

Before definitively answering, let’s look at efforts to repair and utilize some of Portland’s recent past architectural resources.
DoCoMoMo_Oregon, a local chapter of DoCoMoMo_US, is a non-profit organization dedicated to promoting the interest, education, and advocacy of the architecture, art, landscape, and urban design of the Modern Movement. Recently the Board voiced concerns for the type of alterations proposed for the late modern (post modern!) PacWest Center designed by Hugh Stubbins & Associates / Skidmore, Owings & Merrill, which underwent a Design Advice. John Russell, the original developer of the project who chose Hugh Stubbins as the architect, from a shortlist that included Philip Johnson and Minoru Yamasaki, provided testimony that agreed with the design team that the retail in the building isn’t currently working, but that the building’s design isn’t the major contributor. Overall, the Design Commission encouraged the design team to treat the PacWest Center like a historic building, and use the Secretary of the Interior’s Standards as an approach for the renovation.

The Koin Tower, designed by ZGF Partnership in 1984, is one of the most prominent buildings in Portland’s downtown rising sky-line, and an example of Post Modern architecture. It is Post Modern with whimsical lines and historical references to Gothic, Spanish, and Deco architectural characteristics. (King, 106) However, unlike the Post Modern Portland Building (interiors designed by ZGF), the Koin Tower has been accepted for its architectural whimsy in a place with a known tag line, “Keep Portland Weird.”

And on a smaller scale that truly connects to placemaking, the Lovejoy Fountain Pavilion designed by Charles Moore in 1962 as part of Lawrence Halprin’s fountain sequence was thoughtfully restored in 2012.

Appreciating the Recent Past
So, has Portland come to appreciate its architectural heritage from the recent past? While these four examples offer a glimpse of optimism towards the maintenance and rehabilitation of architecture from the recent past, there is still an uphill battle towards the preservation and rehabilitation of Post Modern, Modern, and historic architectural resources. This is not an argument to save every resource, but it’s our responsibility to our present and future communities to have places rich in architectural resources from different movements of history- architecture rich in diversity. For architectural diversity contributes to our place making, culture, and identity. Let’s Keep Portland Architecture Weird by both adding to and maintaining and rehabilitating.

Lovejoy Pavilion

Lovejoy Pavilion

Written by Kate Kearney, Marketing Coordinator

———————————————————-
King, Bart. An Architectural Guidebook to Portland. 2nd ed. Corvallis: Oregon State University Press, 2007. Print.

Post Modern Building Materials Part One

Advances in science and material properties have always played a role in the development of building products. Postmodernism fueled the advent of several new building materials including Glass Reinforced Polyester (James Stirling, Olivetti Training Center, c.1972), Insulated Exterior Metal Panel Systems (Richard Meier, Bronx Development Center, c.1979), Dupont’s Fabric Tensile Structures (University of Florida Gainesville, O’Connell Center, c.1980), polycarbonate sheets (Kalwall, et.al.), pre-fabricated brick panel systems, and many other new construction technologies.

richard-meier-bronx-development-center

Richard Meier, Bronx Development Center, 1977


Post Modern Building Materials and Life-Cycle
Like any new technology or building material, the life span of postmodern materials is now known but there is a lack of case studies and journalistic papers describing the failure mechanisms, and more importantly, how to repair, retain, or preserve the exterior materials. On one level there is an inherent impermanence of the original materials based on a default decision making process that limited a building’s longevity to a twenty-five (25) year life-cycle. On another level, the façade of the Postmodern building incorporates building systems or individual components that are neither produced nor assembled currently in similar manners due to improvements in technology and building envelope science. In either case, the process and method of building envelope repair could dramatically or minimally impact the exterior character of Postmodern structures.
aldo-rossi-theatro-delmondo-venice

Aldo Rossi, Theatro Delmondo, Venice 1982


There are some Postmodern structures, despite the polarizing opinions regarding the aesthetic values, that are iconographic examples of the high-end of Postmodern style. Included with those structures named above, are the Portland Building (Michael Graves, c. 1984), Piazza d’Italia (Charles Moore, 1982), and Theatro Delmondo, (Aldo Rossi, Venice 1982) to name a few. Rossi’s Theatro Delmondo poses an even more challenging theoretical debate as to whether or not to preserve or repair the structure since the theater was built as a floating temporary stage set.

Rehabilitation and Postmodern materials
The rehabilitation of Postmodern materials is compounded by the lack of physical or chemical stability in the original product (e.g. color fading or material breakdown by UV light); changing urban context and surrounding development; inadequate original construction means and methods, and lack of precedence – Postmodern buildings are just now reaching the end of their design life-cycle. Proposals to improve envelope performance are challenged in finding products that will improve performance and retain the aesthetics of a Postmodern building. Given these challenges, is the proper repair, rehabilitation, or conservation of Postmodern structures to retain the appearance of insubstantial material installed incorrectly? Or should any new work, often entailing proposals for replacing the building facades, to discount the design appearance and fix the problems regardless of the impact.

zgf-koin-center-materials

ZGF, Koin Center, 1982


Moving forward, there are precedents set by the early and current challenges associated with mid-century modern structures that can be followed. For example, circa 1960 glass curtain wall upgrades have created methods to retain the exterior appearance while upgrading the thermal efficiency of the system or conversely, left the existing original curtain wall in place and upgrade the mechanical system and distribution system as both more cost effective and more energy efficient over the life of the building. The solutions towards postmodern materials will similarly be led by research, initiative, and innovation. Engaging the manufactures in the dialogue is essential, particularly when replacing a failed product is critical to retaining the building design character.
james-stirling-olivetti-training-center-materials

James Stirling, Olivetti Training Center, 1972


Unique Challenges
There are unique challenges with Postmodern buildings, but as is the case with all new materials and systems, developing a strategy of research, methodology, and documentation will result in extending the life-cycle of these provocative structures.
pomo-text

Portland Building

Written by Peter Meijer, AIA, NCARB / Principal

PMAPDX 2015 Year in Review

HAPPY HOLIDAYS!!

PMAPDX-Holiday-2015

Wishing you a holiday season filled with cheer and delight from Peter Meijer Architect.

As we look back over the past year and reflect on our completed, on-going, and upcoming projects, we’d like to take the opportunity to say we have truly enjoyed collaborating and communicating with you.

2015 PROJECT HIGHLIGHTS
OHSU-2015-PMAPDX


Pacific-Tower-Rehabilitation-PMAPDX


City-of-LO-CRU-ILS-PMAPDX

PMA HAPPENINGS
Peter Meijer AIA, NCARB, was a Presenter at the RCI, Inc. 2015 Symposium on Building Envelope Technology. He presented on, When Field Performance of Masonry Does Not Correlate with Lab Test Results. PPS Grant High School was the case study presented.

Kristen Minor, Preservation Planner, is the newest member of the City of Portland Historic Landmarks Commission.

Ballpark Preservation and Its Most Recent Event

civic-stadium-eugene-prefireSince its creation in 1862, the ballpark has continued to have an influential impact on those who experience it. This impact is not only measured by heritage tourism to these sites, like Fenway Park or Wrigley Field, but also by how they are preserved. In some cases, such as Fenway Park, which is listed on the National Register of Historic Places, ballparks are preserved in a very traditional sense of the word. However, most ballparks never have the opportunity to reach the benchmarks needed to be preserved according to these preservation standards and are therefore preserved through a variety of alternative preservation methods. These methods, which span the spectrum from preserving a ballpark through the presentation of their original objects in a museum to the preservation of existing relics in their original location, such as Tiger Stadium’s center field flag pole, have given a large segment of our society an opportunity to continue their emotional discourse with this architectural form. Yet, the results of these preservation methods are commonly only the conclusion to a greater act of ceremony and community involvement that preludes them.

civic-stadium-eugene-prefire-002Part of this ceremony and community involvement is the simple act of participating in the ritual that is the game itself. Most often this is conducted through observation, as society, architecture, and sport become one for nine innings. However, other documented examples of ceremony and community involvement that express the level of compassion our society has for ballparks include ritualistic acts, such as the digging up and transferring of home plate. In some cases, this ritual has included the transferring of home plate via helicopter, limousines, or police escort. Ceremonies like this have also included, for better or worse, the salvaging of dirt, sod, and other relics from a ballpark to be, either cherished as a memento or repurposed in new stadiums. Nevertheless, these examples of ceremony only scratch the surface of the depth that is our society’s infatuation with sport and its architecture, more specifically the ballpark.

civic-stadium-eugene-postfireCeremonial Acts & Community Involvement Efforts
Some of the most recent ceremonial acts and community involvement efforts that help to further this commitment to ballparks are the acts executed by the Friends of Civic Stadium in Eugene, Oregon. Founded in 2009, the Friends of Civic Stadium have dedicated countless hours towards preserving one of our country’s last wooden ballparks. These efforts include years of community activism, documentation, fundraising, and grounds keeping. Collectively, these efforts resulted in the prolonged life of the 77-year-old ballpark, as they fought off national corporate efforts to purchase and demolish the stadium. But, in an ironic twist of fate, all of the hard work, collaboration, and time spent on preserving a single ballpark came to an abrupt halt on June 29, 2015 when Civic Stadium caught fire and burned down in a matter of hours. Left with only charred remains and a distraught community, the Friends of Civic Stadium moved on in the only way they knew how, through ceremony.

civic-stadium-eugene-postfire-003Led by the Friends of Civic Stadium president, Dennis Hebert, the organization held a wake in honor of their lost historic building. The wake, intimate in size, resembled a jazz funeral with a procession to the remains of the ballpark led by the One More Time Marching Band. Once at the site of the ballpark, there were multiple ritualistic acts that mimicked traditional funeral ceremonies. These acts included a moment of silence, a passionate speech by Dennis Hebert, and the always haunting rendition of Amazing Grace on bagpipes. After the ceremony, the Friends of Civic Stadium and the friends of Friends of Civic Stadium proceeded back to Tsunami Books where they continued to express their condolences and fond memories of the lost historic ballpark.

Overall, this ceremony is just another example of the power that place and architecture have in our society. Like a living form, architecture, and more notably the ballpark, is preserved and mourned for like a family relative. Yet, when you expand the definition of family relative, the ballpark seamlessly fits in, and that is exactly why we preserve them.

Friends of Civic Stadium
For further information about the Friends of Civic Stadium please visit their website. They are currently collaborating with the Eugene Civic Alliance, the current owners of Civic Stadium and its property, in preserving the historical and cultural significance of Civic Stadium through alternative forms of preservation given its unfortunate fate.

Written by Brandon J. Grilc, Preservation Specialist

civic-stadium-eugene-prefire-003

How to Improve Energy Efficiency in Historic Buildings

As historic architects we find window replacement projects to be particularly challenging — removing original materials from a structure can fundamentally change the design aesthetic. Our built environment must evolve to support more sustainable living, but finding the best way to achieve this goal for historic structures, while minimizing any aesthetic impacts, is an ongoing challenge.

When looking to improve energy performance the first inclination is often to replace the component with the lowest thermal resistance – the windows. Single pane historic windows provide minimal thermal resistance and contribute to heat loss through the building envelope. But is window replacement really the best option for reducing the carbon footprint of a historic building – how does it compare to other strategies?

energy-analysis-West ElevationPMA recently performed an energy analysis study to answer that question. The project was to provide quantitative data on the energy savings associated with window replacement versus insulating exterior walls. We choose to study a structure on the brink of historic status – a 1960’s multi-story residential structure with large character defining view windows. The structure is composed of concrete walls, beams, floors, and columns with single pane aluminum windows. The existing building has approximately 36% glazing and no insulation.

The analysis we performed compared seven retrofit strategies ranging from minimal code compliance to super insulated walls and windows. Details on the specific constructions, r-values, and glazing properties are outlined below.

Construction Types Chart A wide range of constructions were chosen in order to see the full range of possible results. Future studies may focus on more refined material choices and a narrower set of parameters. The analysis was run in Autodesk Green Building Studio which is an excellent tool to perform basic energy models. While GBS does not allow for complex simulations it can quickly and accurately compare a variety of different design alternatives.

We chose to look at four different indicators to compare the results:
• Energy Use Intensity (EUI) indicates how much energy is used per square foot per year and is a very common way of comparing how different buildings perform.
• The quantity of electricity used per year indicates how much energy is used on cooling loads, heating loads, interior loads, and lights.
• The quantity of fuel used per year indicates primarily energy used for heating.
• The annual peak demand indicates the maximum amount of energy used at any single time over the course of a year.

We assessed the data in terms of percentage improvement over the Existing scenario. The charts below provide a comparison of the seven different retrofits.

Results Chart

The Results
What is intriguing in the results is the large difference in performance within the glazing retrofits options between the Double Pane LoE Glazing and the Triple Pane Glazing. While the Double Pane Glazing provides a notable improvement to the building’s energy performance it is still surpassed by all of the other retrofits. Conversely the Triple Pane Glazing far out performs all of the insulation retrofit strategies. The range between the two glazing retrofits indicates that new windows have the potential to have a substantial impact on energy performance. Unfortunately triple pane glazing is typically cost prohibitive and the LoE coatings applied to achieve maximum efficiency are incongruent with historic buildings. As technologies change and improve it is possible that these obstacles will be overcome – potentially making window replacement for energy efficiency purposes a more viable option.

window-detailWith current technologies the results indicate that adding insulation to a building has the most cost effective impact on energy performance. Installing new insulation is typically less expensive than window replacement and the results of this study show that Code Compliant (R-~7) insulation can have a significant impact on overall energy usage, outperforming Double Pane window replacement. Interestingly, the results also indicate that a High Insulation (R-25) retrofit performs better than a Combined Retrofit with Code Compliant Insulation (R-~7) and Double Pane Glass.

The results clearly indicate that adding insulation is an excellent way to improve energy performance without impacting the exterior façade of a historic building. Like any retrofit, insulation poses its own challenges: can it be installed on the interior without affecting historic finishes? Will changes in the temperature of the wall cause deterioration?, etc. Conversely, there are instances where window replacement is the right choice (when the existing windows have reached the end of their lifespan) and in this instance choosing a double pane glazing option can improve energy performance. In most cases, if you are looking to improve the energy performance of your building – it is more effective to explore insulation retrofit options rather than window replacement.

Written by Halla Hoffer, Architect I

Indigenous Mid-Century Religious Architecture of Oregon

During the 1960s Oregon architects, led by the Portland Archdiocese, created significant examples of unique mid‐century churches and religious structures in collaboration with local craftsman, artists, and influenced by European examples, resulting in a unique indigenous religious Modern Oregon style.

Indigenous Mid-Century Religious Architecture of Oregon

Oregon has several examples of unique mid-century churches and religious structures. Oregon is also rich in mid-century religious architecture that are unique examples of the community and/or church leadership’s interest in combining modern architecture with modern art.
During the late 1930’s Oregon architects were seeking ways to meet both the liturgical programs of their clients yet express the architecture using materials evocative of the Northwest.

Watzek-houseGreatly influenced by the 1936 publication of John Yeon’s Watzek House, Oregon architects began to experiment with wood skins and “Mt. Hood” entry facades reminiscent of Yeon’s design. The idea that wood was symbolic of Northwest character continued through the 1950s and 1960s mid-century modern aesthetics. Local architects like Francis Jacobberger, McCoy & Bradbury, Pietro Belluschi, and others crafter their designs from outside to inside using local species of wood while simultaneously using wood to express the structural elements.

During the 1950s and 1960s, architectural journals devoted pages and images to the increasingly innovative use of concrete as both a structural element and aesthetic material. Local Oregon firms too experimented with concrete. John Maloney’s 1950 design for St. Ignatius is executed entirely of formed concrete. The exterior, interior, and the bell tower are unabashedly presented as an aesthetic material worthy of religious structure. Maloney deliberately painted the interior white to match the exterior and emphasize the versatility and economy of concrete, the new material of choice.

Queen of Peace
One of the most unique indigenous examples of Oregon religious architecture is the Queen of Peace in north Portland. Queen of Peace combines both the engineering daring of concrete with the creative influences from local artists. Queen of Peace is created with clay, river stone, and stunning minimalist concrete structure.

120715 N Portland Church 001

Queen of Peace was influenced by Friar John Domin who served the Portland Archdiocese as a priest for 57 years, as a pastor of several parishes, a high school art teacher, and volunteer at the Art Institute of Portland. As Chairman of the Sacred Art Commission of the Archdiocese of Portland, he actively engaged in the design process of churches and chapels. He worked with architects and hired ingenious liturgical artists who worked in a variety of media to enhance churches with stunning sacred art. ” (Sanctuary for Sacred Arts website)

bronze-entry-doors-queen-of-peaceWell known Oregon artists, including Ray Grimm, a ceramists, created the dominating Tree of Life mosaic on the west façade. LeRoy Setziol, the “Father of Wood Carving in Oregon,” created the wood Stations of the Cross and baptismal font. Surprisingly Setziol was commissioned to execute the stained glass windows as well. And Lee Kelly, one of Portland’s best known metal sculptors, enriched the church with delicate displays of metal work both on the interior and exterior. Queen of Peace is a marvelous collaboration of architecture, art, and technical daring creating a wonderful display of Oregon indigenous mid-century religious architecture.



Written by Peter Meijer AIA, NCARB, Principal. This post is an excerpt from Peter’s presentation at this year’s DoCoMoMo_US National Symposium: Modernism on the Prairie. Peter is the President and Founder of DoCoMoMo_US Oregon Chapter. For more information, please visit: DoCoMoMo-US