Tag Archives: blog

Navigating the Historic Tax Credit Application

Historic Tax Credits were founded in partnership with the National Park Service (NPS) and the Internal Revenue Service (IRS) in 1986. As one of a number of incentives to help owners preserve historic properties, Historic Tax Credits have since become the premier financial incentive towards the rehabilitation of income-producing historic properties. Historic Tax Credits can be used for older, non-historic properties as well, so long as they are income-producing, at a lower credit amount. An owner can receive a 20% rehabilitation tax credit for the amount spent on the qualifying rehabilitation of a National Register-listed property, or 10% tax credit for the amount spent on the qualifying rehabilitation of an older property with no historic status.

There is a minimum threshold of rehabilitation investment that must be met in order to qualify. Rehabilitation project costs must be equal to the Real Market Value (as assessed by the local tax authority) minus the value of the land or $5000, whichever is greater. Rehabilitation Tax Credits for tax-exempt historic properties are possible provided that the investment partner using the tax credits is a for profit, tax paying entity. Typically, separate Limited Liability Corporations are established through which rehabilitation funding flows to the project.
Pacific-Tower-Tax-Credits20% Rehabilitation Tax Credit
The most common use of historic tax credits is the 20% Rehabilitation Tax Credit. To qualify for the 20% historic tax credit a property must be listed on the National Register of Historic Places either individually or as a contributing resource within a historic district. Properties must be a building as defined by Treasury Regulation 1.48-1(e), income producing, and undergo a certified rehabilitation process, which is evaluated by the NPS and the State Historic Preservation Office (SHPO). This process includes the completion of a three part application: Part 1-Evauation of Significance (not typically necessary if the building is already on the National Register); Part 2-Description of Rehabilitation; and Part 3-Request for Certification of Completed Work. Once completed and approved by the NPS the 20% tax credit can be claimed for the tax year in which the property was certified by the NPS. Tax credits can be taken in phases as well, as long as each phase meets certain conditions.

10% Rehabilitation Tax Credit
To qualify for the 10% rehabilitation tax credit a property must have been built before 1936. Properties eligible for the 10% tax credit must be buildings, income producing, non-residential, and remain on the original site. Historic properties that have been relocated do not qualify. Other conditions include the retention of at least 50% of the external walls, at least 75% of internal and external walls, and at least 75% of the internal framework. Unlike the application process for the 20% Historic Tax Credit, there is no formal review process or certification. However, the tax credits are redeemed the same way. Buildings listed individually or contributing resources within a Historic District on the National Register of Historic Places are not eligible for the 10% tax credit.

Current Trends
The staff at PMA have years of experience navigating the Historic Tax Credit application, placing properties on the National Register of Historic Places, and working with the State Historic Preservation Office and the National Park Service to assure the rehabilitation project qualifies and receives historic tax credits.
US-Custom-House-Tax-Credit
From initial application of Part I through final certification of Part III, 180 days or more can elapse. Current development practices and financial investment processes place pressure on the development schedule to initiate rehabilitation prior to final approval by the National Park Service. Early construction places the tax credit under risk and final approval can be withheld pending review of all rehabilitation impacts. Market demand for open space with exposed mechanical, electrical, and plumbing systems is creating a trend in rehabilitation of historic properties to expose these functional systems.

PMA’s experience in working with the market demand and reaction to the trend by SHPO and NPS, can provide owners with advice on where reviewers will be more stringent. PMA has worked with NPS when a Condition of Approval was placed on the submitted Part 2 Description of Rehabilitation requesting alteration of completed ceiling conditions throughout the building in occupied space. Although the owner did know that construction prior to approval was a risk, they also needed to have some spaces complete in order to retain certain tenants and meet the financial loan terms. PMA sought a compromise with NPS retaining completed ceilings, but altering the design intent and finish in those spaces not yet complete in order to meet the new Condition of Approval.
usch_Ground Floor_Northeast Room (Viewing Northwest)
Similarly, PMA has noted in the Part II application process an acceptance of exposed fire sprinkler lines and exposed conduits but resistance to exposed ductwork and exposed cable trays. Whereas it could be argued that exposed mechanical and wiring systems are akin to exposed electrical systems in that the exposed work does not have a long-term impact on the historic walls, floors, and ceilings, the combined affect changes the subjective visual impact from NPS perspective.

Each of the above trends requires diligent documentation and on-going discussion during the construction process, which, in itself, can be very fluid and entail rapid changes. The tax credit consultant must be skilled in communication and work with both the development team and tax credit reviewers.

PMA Technical Assistance
PMA is proud to undertake historic tax credit commissions as these projects have been a great way for our office to combine our specializations in architecture and preservation. Over the last five years, PMA has completed numerous Historic Tax Credit applications throughout Oregon and Washington. Overall, Historic Tax Credits have proven to be vital to the financial proforma and successful investment strategy to preserve and rehabilitate historic properties.
Pac-Tower-Tax-Credit

Written by Peter Meijer AIA, NCARB, Principal / Kristen Minor, Preservation Planner / Brandon Grilc, Preservation Specialist

Assessing Union Station to be Part of Our Future

Portland’s Union Station is the only major railroad station built in Oregon, and one of the oldest major extant passenger terminals on the West Coast. From its inception, Union Station has functioned as a major transportation link to Portland and the west coast, with a continued vital role to play in future rail and multimodal transportation planning.
Union-Station-Historic-photo
A Sense of Place
Critical to adapting Union Station, and other historic structures, for current and future use is to thoroughly understand key elements and components that convey the sense of place and rich history of the structure. A deeper understanding enables informed decisions to be made about the potential of key characteristics to remain for future generations. Union Station was constructed between 1892 and 1894 and was designed by Van Brunt & Howe architects in the Queen Anne style with Romanesque detail. From 1927 thru 1930, the Main Concourse was modernized by Portland’s internationally known architect, Pietro Belluschi, to reflect the streamline era of rail technology. Like the original 1892 elements, the Belluschi modernization’s are equally important stories to tell.

Creating a graphic document annotating “changes over time” is an essential tool for evaluating how Union Station has adapted to improvements in rail technology, fluctuations in passenger volume, cultural shifts regarding train travel, as well as modifications to specific architectural elements that impact the historic integrity and interpretation of original design intent.
Union-Station-Report-Outline-pg2
Methodology for Assessment
Our method of developing the graphic drawing is to compare historic floor plans and historic photographs to current plans and images through a process of layering plans from different eras over one another and drawing the altered, or missing, elements (e.g. walls, furniture, spaces, etc.) in different colors. This methodology provides an easily interpreted floor plan. The use of color enhances the image and creates a visual record of both changes and original historic fabric. In reading the graphic drawing, it becomes readily discernible that changes include: wood floors replaced with concrete and new floors added; openings in the main concourse were moved and enlarged; the women’s waiting room and toilet were removed to widen the south hall, the stairs were renovated, and a new baggage counter was constructed. The covered concourse was glassed in and a section was made into the First Class Lounge, which remains today. And in the 1940s, a nursery, or crying, room was added.
Union-Station-PMAPDX-drawing
What is fascinating about the history of a building like Union Station, is that the rail lines and street patterns are also integrated with the function and use of the structure and have changed over time as well. The construction of Union Station came soon after Portland was fully connected by rail in 1883 to California, Montana, and rail lines running to the East Coast across the U.S. The Spokane-Portland-Seattle rail connection was finished in 1908. In 1922, Union Station became accessible to all major passenger railroads operating through Portland.

When originally constructed, six passenger car rail lines approached the rear of Union Station. The waiting platform consisted of planks on dirt with no canopy. The block across from Union Station consisted of a small restaurant, bar, other stores, and stables. A five foot iron fence bordered a large lawn and sidewalk to the south and west of the station. The High Shed, a large two-story metal shed was the first canopy built to cover the passenger platforms and extended perpendicular to the station. Under this High Shed, two smaller scale platform canopies were erected paralleling the tracks. A mail canopy was built at the north end of the building in 1915.

By 1920, the block across from Union Station’s main entrance had been converted to parking to relieve congestion. As automobile use increased throughout the city, parking configurations were constantly changing over the years. By 1923, an elevated walkway was built to connect the Broadway Bridge to the main entrance.
union-station-pmapdx-changes-overtime

With the introduction of larger diesel locomotives and potential for high speed rail along the northwest corridor, the track, platforms, and canopies have had to be modified. Safety and accessibility have also driven the need for changes and modernization. Documenting these alterations with graphics, provides a foundation from which to advocate for further refinement while recognizing historic precedent and protection of historic elements.

union-station-pmapdx-historic-photo

Written by Peter Meijer, AIA,NCARB, Principal

PMA is part of the DOWA-IBI Group team for this exciting PDC Union Station Renovation Project.

Ballpark Preservation and Its Most Recent Event

civic-stadium-eugene-prefireSince its creation in 1862, the ballpark has continued to have an influential impact on those who experience it. This impact is not only measured by heritage tourism to these sites, like Fenway Park or Wrigley Field, but also by how they are preserved. In some cases, such as Fenway Park, which is listed on the National Register of Historic Places, ballparks are preserved in a very traditional sense of the word. However, most ballparks never have the opportunity to reach the benchmarks needed to be preserved according to these preservation standards and are therefore preserved through a variety of alternative preservation methods. These methods, which span the spectrum from preserving a ballpark through the presentation of their original objects in a museum to the preservation of existing relics in their original location, such as Tiger Stadium’s center field flag pole, have given a large segment of our society an opportunity to continue their emotional discourse with this architectural form. Yet, the results of these preservation methods are commonly only the conclusion to a greater act of ceremony and community involvement that preludes them.

civic-stadium-eugene-prefire-002Part of this ceremony and community involvement is the simple act of participating in the ritual that is the game itself. Most often this is conducted through observation, as society, architecture, and sport become one for nine innings. However, other documented examples of ceremony and community involvement that express the level of compassion our society has for ballparks include ritualistic acts, such as the digging up and transferring of home plate. In some cases, this ritual has included the transferring of home plate via helicopter, limousines, or police escort. Ceremonies like this have also included, for better or worse, the salvaging of dirt, sod, and other relics from a ballpark to be, either cherished as a memento or repurposed in new stadiums. Nevertheless, these examples of ceremony only scratch the surface of the depth that is our society’s infatuation with sport and its architecture, more specifically the ballpark.

civic-stadium-eugene-postfireCeremonial Acts & Community Involvement Efforts
Some of the most recent ceremonial acts and community involvement efforts that help to further this commitment to ballparks are the acts executed by the Friends of Civic Stadium in Eugene, Oregon. Founded in 2009, the Friends of Civic Stadium have dedicated countless hours towards preserving one of our country’s last wooden ballparks. These efforts include years of community activism, documentation, fundraising, and grounds keeping. Collectively, these efforts resulted in the prolonged life of the 77-year-old ballpark, as they fought off national corporate efforts to purchase and demolish the stadium. But, in an ironic twist of fate, all of the hard work, collaboration, and time spent on preserving a single ballpark came to an abrupt halt on June 29, 2015 when Civic Stadium caught fire and burned down in a matter of hours. Left with only charred remains and a distraught community, the Friends of Civic Stadium moved on in the only way they knew how, through ceremony.

civic-stadium-eugene-postfire-003Led by the Friends of Civic Stadium president, Dennis Hebert, the organization held a wake in honor of their lost historic building. The wake, intimate in size, resembled a jazz funeral with a procession to the remains of the ballpark led by the One More Time Marching Band. Once at the site of the ballpark, there were multiple ritualistic acts that mimicked traditional funeral ceremonies. These acts included a moment of silence, a passionate speech by Dennis Hebert, and the always haunting rendition of Amazing Grace on bagpipes. After the ceremony, the Friends of Civic Stadium and the friends of Friends of Civic Stadium proceeded back to Tsunami Books where they continued to express their condolences and fond memories of the lost historic ballpark.

Overall, this ceremony is just another example of the power that place and architecture have in our society. Like a living form, architecture, and more notably the ballpark, is preserved and mourned for like a family relative. Yet, when you expand the definition of family relative, the ballpark seamlessly fits in, and that is exactly why we preserve them.

Friends of Civic Stadium
For further information about the Friends of Civic Stadium please visit their website. They are currently collaborating with the Eugene Civic Alliance, the current owners of Civic Stadium and its property, in preserving the historical and cultural significance of Civic Stadium through alternative forms of preservation given its unfortunate fate.

Written by Brandon J. Grilc, Preservation Specialist

civic-stadium-eugene-prefire-003

How to Improve Energy Efficiency in Historic Buildings

As historic architects we find window replacement projects to be particularly challenging — removing original materials from a structure can fundamentally change the design aesthetic. Our built environment must evolve to support more sustainable living, but finding the best way to achieve this goal for historic structures, while minimizing any aesthetic impacts, is an ongoing challenge.

When looking to improve energy performance the first inclination is often to replace the component with the lowest thermal resistance – the windows. Single pane historic windows provide minimal thermal resistance and contribute to heat loss through the building envelope. But is window replacement really the best option for reducing the carbon footprint of a historic building – how does it compare to other strategies?

energy-analysis-West ElevationPMA recently performed an energy analysis study to answer that question. The project was to provide quantitative data on the energy savings associated with window replacement versus insulating exterior walls. We choose to study a structure on the brink of historic status – a 1960’s multi-story residential structure with large character defining view windows. The structure is composed of concrete walls, beams, floors, and columns with single pane aluminum windows. The existing building has approximately 36% glazing and no insulation.

The analysis we performed compared seven retrofit strategies ranging from minimal code compliance to super insulated walls and windows. Details on the specific constructions, r-values, and glazing properties are outlined below.

Construction Types Chart A wide range of constructions were chosen in order to see the full range of possible results. Future studies may focus on more refined material choices and a narrower set of parameters. The analysis was run in Autodesk Green Building Studio which is an excellent tool to perform basic energy models. While GBS does not allow for complex simulations it can quickly and accurately compare a variety of different design alternatives.

We chose to look at four different indicators to compare the results:
• Energy Use Intensity (EUI) indicates how much energy is used per square foot per year and is a very common way of comparing how different buildings perform.
• The quantity of electricity used per year indicates how much energy is used on cooling loads, heating loads, interior loads, and lights.
• The quantity of fuel used per year indicates primarily energy used for heating.
• The annual peak demand indicates the maximum amount of energy used at any single time over the course of a year.

We assessed the data in terms of percentage improvement over the Existing scenario. The charts below provide a comparison of the seven different retrofits.

Results Chart

The Results
What is intriguing in the results is the large difference in performance within the glazing retrofits options between the Double Pane LoE Glazing and the Triple Pane Glazing. While the Double Pane Glazing provides a notable improvement to the building’s energy performance it is still surpassed by all of the other retrofits. Conversely the Triple Pane Glazing far out performs all of the insulation retrofit strategies. The range between the two glazing retrofits indicates that new windows have the potential to have a substantial impact on energy performance. Unfortunately triple pane glazing is typically cost prohibitive and the LoE coatings applied to achieve maximum efficiency are incongruent with historic buildings. As technologies change and improve it is possible that these obstacles will be overcome – potentially making window replacement for energy efficiency purposes a more viable option.

window-detailWith current technologies the results indicate that adding insulation to a building has the most cost effective impact on energy performance. Installing new insulation is typically less expensive than window replacement and the results of this study show that Code Compliant (R-~7) insulation can have a significant impact on overall energy usage, outperforming Double Pane window replacement. Interestingly, the results also indicate that a High Insulation (R-25) retrofit performs better than a Combined Retrofit with Code Compliant Insulation (R-~7) and Double Pane Glass.

The results clearly indicate that adding insulation is an excellent way to improve energy performance without impacting the exterior façade of a historic building. Like any retrofit, insulation poses its own challenges: can it be installed on the interior without affecting historic finishes? Will changes in the temperature of the wall cause deterioration?, etc. Conversely, there are instances where window replacement is the right choice (when the existing windows have reached the end of their lifespan) and in this instance choosing a double pane glazing option can improve energy performance. In most cases, if you are looking to improve the energy performance of your building – it is more effective to explore insulation retrofit options rather than window replacement.

Written by Halla Hoffer, Architect I

Indigenous Mid-Century Religious Architecture of Oregon

During the 1960s Oregon architects, led by the Portland Archdiocese, created significant examples of unique mid‐century churches and religious structures in collaboration with local craftsman, artists, and influenced by European examples, resulting in a unique indigenous religious Modern Oregon style.

Indigenous Mid-Century Religious Architecture of Oregon

Oregon has several examples of unique mid-century churches and religious structures. Oregon is also rich in mid-century religious architecture that are unique examples of the community and/or church leadership’s interest in combining modern architecture with modern art.
During the late 1930’s Oregon architects were seeking ways to meet both the liturgical programs of their clients yet express the architecture using materials evocative of the Northwest.

Watzek-houseGreatly influenced by the 1936 publication of John Yeon’s Watzek House, Oregon architects began to experiment with wood skins and “Mt. Hood” entry facades reminiscent of Yeon’s design. The idea that wood was symbolic of Northwest character continued through the 1950s and 1960s mid-century modern aesthetics. Local architects like Francis Jacobberger, McCoy & Bradbury, Pietro Belluschi, and others crafter their designs from outside to inside using local species of wood while simultaneously using wood to express the structural elements.

During the 1950s and 1960s, architectural journals devoted pages and images to the increasingly innovative use of concrete as both a structural element and aesthetic material. Local Oregon firms too experimented with concrete. John Maloney’s 1950 design for St. Ignatius is executed entirely of formed concrete. The exterior, interior, and the bell tower are unabashedly presented as an aesthetic material worthy of religious structure. Maloney deliberately painted the interior white to match the exterior and emphasize the versatility and economy of concrete, the new material of choice.

Queen of Peace
One of the most unique indigenous examples of Oregon religious architecture is the Queen of Peace in north Portland. Queen of Peace combines both the engineering daring of concrete with the creative influences from local artists. Queen of Peace is created with clay, river stone, and stunning minimalist concrete structure.

120715 N Portland Church 001

Queen of Peace was influenced by Friar John Domin who served the Portland Archdiocese as a priest for 57 years, as a pastor of several parishes, a high school art teacher, and volunteer at the Art Institute of Portland. As Chairman of the Sacred Art Commission of the Archdiocese of Portland, he actively engaged in the design process of churches and chapels. He worked with architects and hired ingenious liturgical artists who worked in a variety of media to enhance churches with stunning sacred art. ” (Sanctuary for Sacred Arts website)

bronze-entry-doors-queen-of-peaceWell known Oregon artists, including Ray Grimm, a ceramists, created the dominating Tree of Life mosaic on the west façade. LeRoy Setziol, the “Father of Wood Carving in Oregon,” created the wood Stations of the Cross and baptismal font. Surprisingly Setziol was commissioned to execute the stained glass windows as well. And Lee Kelly, one of Portland’s best known metal sculptors, enriched the church with delicate displays of metal work both on the interior and exterior. Queen of Peace is a marvelous collaboration of architecture, art, and technical daring creating a wonderful display of Oregon indigenous mid-century religious architecture.



Written by Peter Meijer AIA, NCARB, Principal. This post is an excerpt from Peter’s presentation at this year’s DoCoMoMo_US National Symposium: Modernism on the Prairie. Peter is the President and Founder of DoCoMoMo_US Oregon Chapter. For more information, please visit: DoCoMoMo-US

Modern Residential Building Styles

city-of-olympia-survey-pmapdxBuildings constructed before 1965 have reached the age of eligibility for being considered historic by the standards of the National Register. That means that much of Modern Architecture, the general period ranging from 1950 through 1970, is historic, or soon will be considered historic as the 50-year mark is crossed. As historians assess and study Modern Architecture, we provide ever more precise descriptions and terms to describe the sub-styles and variations within the large umbrella term, “Modern.” As in taxonomy, which classifies and categorizes living organisms, we can recognize and assign groups of similar resources together for study.

Modern architecture had its roots after World War I as part of an egalitarian movement. The new architecture looked to industrial materials and processes to replace painstaking handwork; a horizontal proportion and deliberate embrace of the ground plane as opposed to a formal, vertical building proportion; and the rejection of ornamentation.

A Mid-Century Residential Survey in the City of Olympia

PMA has been working on a Mid-Century Residential survey in the City of Olympia. The date of construction for resources surveyed is limited to a two-decade span from 1945 to 1965, and the building type is limited to single-family residential. Surprisingly, there are more individual sub-styles found in this survey than were identified in a more broadly focused survey, our 2013 Mid-Century non-residential survey in St Louis, MO. The reason for this is that the tight focus of study allows for classification based on more specific characteristics.
WWII cottage-city-of-olympia-survey-pmapdx
The St. Louis survey identified resources constructed from 1945 to 1975 as being either Moderne, Brutalist, International Style, New Formalist, Neo-Expressionist, or simply “Modern Movement” if the style could not be placed in any sub-style. A few had mixed characteristics. The wide variety of building types in the survey, including churches, high-rise towers, and industrial buildings, kept style classifications necessarily broad. Local variations of styles were observed and identified, but were not given their own identifying style name. A future regional survey of the same time period could invite more stylistic classification, if there were enough similar resources to compare.

The Olympia Mid-Century Residential survey covers approximately 400 single-family homes. The variations in style identified might be described in an overview as belonging to one of three “families.” Transitional Modern includes Stripped Classical, Minimal Traditional, and World War II-Era Cottage styles. The second group is Ranch style, which covers a broad range of sub-styles and forms, including Split-Level or Split-Entry Ranch; Contemporary Ranch; Storybook Ranch; and Colonial or Early American Ranch. The last group is a Neo-Expressionist collection of styles that were primarily constructed starting about 1965. These styles include A-Frame, Shed, Geodesic Dome, neo-Futurist, Pavilion, and other eclectic explorations and celebrations of building technology and structure. While none of these Neo-Expressionist styles were identified in the Olympia Mid-Century Residential survey, PMA expects at least one of these (Shed style) to be identified in urban Olympia if the time period studied is extended beyond 1965. Also, many of these styles were constructed in more rural areas than the concentrated Mid-Century neighborhoods examined in the survey. It is possible that Neo-Expressionist residences will come to light with further survey and exploration.

Min-Traditional-city-of-olympia-survey-pmapdxThe Olympia survey classified the first grouping of styles as those that are transitional. Transitional Modern styles have some elements of Modern and some elements of more traditional architecture. Windows might be vertically-oriented, double-hung wood windows (traditional) rather than having horizontal proportions (Modern). A roof might be a moderate pitch, with minimal overhangs (traditional), rather than a shallow pitch with outwardly-extending gables (Modern). In Olympia, 37% of the houses surveyed were Modern Minimal Traditional, by far the most prevalent Transitional Modern style.

Ranch-city-of-olympia-survey-pmapdxRanch style architecture is the style that architecture critics have generally spurned, since houses were often constructed by contractors without architect’s involvement. Ranch buildings are broad, one-story, and horizontal in overall proportion. They have an attached garage which faces the street and is part of the overall form of the house, and almost always a large picture window facing the street as well. Cladding is used to accentuate the horizontal lines of the house, so there is often a change in material at the lower part of the front façade- brick veneer was a popular choice. Many of the sub-styles of Ranch architecture are “styled” Ranch houses, meaning that elements from another style of architecture were placed on a Ranch form building. One example is Storybook Ranch, which uses “gingerbread” trim, dormers or a cross-gable, and sometimes diamond-pane windows. Are these decorated sub-styles still part of the canon of Modern Architecture? In many ways, they are more Post-Modern than Modern, but that distinction is worthy of an involved discussion of its own.

Split-level-city-of-olympia-survey-pmapdxThe Olympia Mid-Century Residential survey found over half the resources surveyed to be Ranch or variants of Ranch style. 31% of the surveyed homes were identified as simply Ranch, with another 11% Early Ranch, 9% Contemporary Ranch, 4% Split-Level or Split-Entry, and 4% one of the “Styled” Ranch variations. Sheer numbers alone remind us that the Ranch is deserving of study and shows us how the majority of middle-class Americans lived. As Alan Hess writes in his book Ranch House,

“Most critics overlooked or ignored the prototypical Ranch house architecture, the variety of its manifestations, the social complexity of its neighborhoods, and the tract Ranch’s often innovative mass-construction methods. To most critics living in traditional cities with little contact with the conditions, desires, and apparent satisfactions of middle-class suburban life, the suburbs were a foreign land.”

The more we study these styles of Modern residential architecture, the more they may be appreciated, celebrated, and well-maintained. And if you live in or grew up in a Ranch style house, it is now potentially historic.
cropped_orig elev-city-of-olympia-survey-pmapdx

Written by Kristen Minor, Preservation Planner. For additional MCM survey projects, please visit our STL Modern Non-Residential Survey project.

Sustainable Housing: High Desert Design

Eco-Huts for Warm Springs Tribes

Warm-Springs-ProForma-pmapdx-designProjects that integrate building science, stewardship planning, and place design are simultaneously exciting and challenging. Any one of the three core concepts can drive the decision making process resulting in a number of solutions. Our current concepts for minimalist eco structures, or “Huts” in the beautiful High Desert of Eastern Oregon are a fantastic challenge.

PMA was provided an opportunity to create temporary Eco-Huts for both the avid fly fishing community and also the vacationer seeking solitude and natural beauty. The site is nestled on the right bank along a gentle curve of the Deschutes River adjacent to the Warm Spring Tribe Reservation. The site topography has a shallow slope towards the river with basalt escarpments forming the river valley. Landscape species include juniper, white pines, native grass, lavender, and wild flowers.

Warm-Springs-ProForma-pmapdx-designWorking with the The Confederate Tribes of Warm Springs, PMA created a prototype model, easily constructed and assembled off site (test fit), then transported to the site and efficiently erected. The prototype was designed to be economical and constructed from lumber from the local lumber mill that produces products from high desert pines. A contemporary design style was chosen to harmonize with existing mid-century Belluschi homes on the property. Both the Belluschi homes and the Eco-Huts stand in contrast with the landscape and topography.

Elevation-pmapdx-design

Perspective-pmapdx-designConceived to have minimal footprints on the land, the Huts rest on piers elevating the floor above the land and accommodating the undulating landscape. A modular dimension was chosen permitting variation in the Eco-Hut sizes. The floor, walls, and roof planes are built off-site and tilted in place. Exterior stained wood material varying from plywood to sawn boards were chosen to harmonize with the High Desert landscape and be of minimal maintenance to the Tribes. Plywood panels are dressed with battens and either in-set from the wood framing or installed flush to the exterior. Sawn mill boards are stained dark desert grey and applied horizontally to create solid side walls atop of which are placed ribbon windows. The primary entry and view wall is a wood frame window and door façade. A deep roof overhang protects the interior from solar gain. Interiors are exposed panel faces or stained mill boards. Partial height walls denote areas of more privacy. The process of assembling the Eco-Huts on-site and disassembling them in the future determined the material pallet of dimensional lumber and pre-assembled wood window walls. The prototype incorporates modular concepts enabling variation in floor plan and amenities in direct response to the Owner’s request for market flexibility.

Section-pmapdx-designInherent in our design approach for the Eco-Huts is the creation of design solutions that emphasize the uniqueness of Place. The concept includes Land Restoration and Land Stewardship. PMA’s goals when designing the prototypes was to help enhance the natural beauty of the river edge by integrating a built structure into the landscape that has minimal disturbance to the site and will leave no footprint when removed. Willows, sedges, and juniper will be planted to provide riparian cover along the Deschutes River in an effort to increase fish habitat and mitigate flooding. The plantings will also help mitigate visual impact from the river. The lumber mill site’s river edge offers an opportunity to create an employee park and river restoration replacing equipment storage and log staging. The Eco-Huts offer an opportunity to test the integration of stewardship planning and place design.
Plan-pmapdx-design

Written by Peter Meijer AIA,NCARB, Principal

The Challenge of Insulating Historic Buildings

A Limited Moisture Study

At its core, architecture in the Pacific Northwest is closely linked to moisture. The damp climate in Portland, Oregon has an impact on how we design new buildings as well as how we retrofit existing structures. Choices in construction, insulation, and flashing systems are always informed by our understanding of water. The success of any building envelope can be determined by how it performs against condensation, humidity, and water infiltration. Adding insulation to historic buildings is particularly challenging because the added material can change how a building envelope functions, leading to future moisture issues. At PMA we use WUFI to simulate and analyze how proposed retrofit strategies may impact the historic building envelope. For a recent project, we performed a limited moisture story of an unusual exterior brick wall that was to receive interior insulation. We studied how variations in insulative material and construction could impact the durability of both the brick and the interior wall structure.

The challenge when insulating a historic building is to protect the masonry from excessive moisture and cold. In uninsulated masonry walls, the building’s heating system warms and dries the masonry from the interior. If insulation is added, the masonry typically stays colder and wetter for longer periods of time, which can lead to deterioration. The intent of PMA’s study was to evaluate the masonry for future deterioration and to also identify any potential for condensation/moisture in the insulation cavity. WUFI was used throughout the design process to provide feedback on potential constructions and inform critical material decisions.

The building was built in 1921 and is unusual given that the original envelope consisted of a two wythe masonry wall with an interior plaster finish. A two wythe masonry wall is not common as it provides limited structure or protection from the elements. The renovation included an extensive seismic retrofit and the installation of new insulation to compensate for the existing wall’s limited structure. PMA was brought onboard to provide feedback on the building envelope detailing. We began our analysis by comparing the performance of the proposed envelope with that of the original building.
Constructions-Existing-building-envelope-pmapdx

Constructions-Proposed-building-envelope-pmapdx

As shown in the illustrations above the existing construction (small drawing) was: 8” of masonry on the exterior, an airgap where wood lath separated the masonry from the plaster, and approximately 1” of plaster on the interior. In comparison the proposed construction (large drawing) consisted of: the existing 8” of masonry on the exterior, a 1/2″ airspace, 1/2″ inch plywood sheathing, 6” of fiberglass batt insulation, a vapor retarder, and 5/8” gypsum with paint on the interior. The first step in our analysis was to accurately model each of these constructions in WUFI. Accurate material modeling is especially challenging in historic buildings. WUFI uses five different material properties to calculate moisture and heat movement. While an extensive built-in database exists for new materials, significantly less information is available for historic materials. PMA often tests materials to determine their properties and adds them to our expanding database of historic materials. The scope of this project didn’t allow for additional material testing. However, we ran several iterations of the analysis with different historic masonry materials to determine a baseline for our analysis. The remaining materials were chosen from WUFI’s building material’s database.

ProposedBrick-RelativeHumidity-pmapdx-wufi

ExistingBrick-RelativeHumidity The results of the initial analysis indicated that as might be expected the masonry was not only exposed to longer periods of cool temperatures, it rarely was capable of fully drying. The two charts at the right show the relative humidity in the original construction and the proposed construction where each vertical line marks a calendar year. Note that a relative humidity above 95% indicates a likelihood of condensation. As can be seen in the original construction, during the wet months the relative humidity hovers at about 95%, but drops off significantly during the warmer months. Alternately in the proposed construction the relative humidity rarely drops below 95%, indicating that moisture is present in the masonry almost year round. When the individual layers are examined it becomes clear that in addition to considerable moisture in the masonry itself, water is likely to condense within the wall cavity. As seen in the series of charts below the relative humidity remains high through the airspace and plywood only dropping off between the exterior and interior face of the insulation.

ProposedLayers-RelativeHumidity-pmapdx-wufiGiven these initial results we suggested a redesign of the insulation system. The existing two wythe wall was not capable of adequately protecting the interior of the building, and the redesign had to accommodate for water infiltration through the masonry. Two options were discussed A) treat the masonry as a veneer wall and install waterproofing to the exterior face of the plywood as a drainage plane or B) install insulation that could be exposed to moisture and water. The constructability of Option A was significantly more complex than that of Option B so our initial analysis focused on Option B.

Constructions-ClosedCell-pmapdx-wufi

Constructions-Hybrid-pmapdx-wufiSpray foam was identified as an alternative to the original batt insulation because it can both serve as a vapor retarder and insulate even when exposed to moisture. Two design options were investigated to determine the extent of closed cell foam necessary to adequately protect the interior surfaces from moisture. As can be seen to the right we investigated a construction filled entirely with closed cell polyurethane foam vs. a cavity filled with a combination of closed and open cell polyurethanes. Additionally we looked at the condition of moisture/heat transfer at the perceived weakest point in the structure, where the structural framing was only barely (1/2”) separated from the masonry. The structural integrity of the seismic upgrade depended on a minimal distance between the framing and the existing masonry, but concerns existed as to whether the wood would be exposed to enough moisture to cause mold.

At the conclusion of the study the spray-foam hybrid option was chosen for further detailing and construction. The combination of closed and open cell foams effectively protected the interior from moisture and condensation. In each renovation scenario studied the exterior masonry was exposed to similar conditions; including increased moisture and cooler temperatures. Given every strategy resulted in similar conditions it was the combined performance of the hybrid system that stood out to the design team.

When the assembly is studied at the structural members, the interior components (plywood and gypsum) retain their low relative humidity. It is important to note that in this scenario the exterior face of the structural wood members are at above 80% relative humidity year round. These conditions may facilitate the growth of mold according to ASHRAE 160-2009. It is recommended that moisture protection be applied to the outer potion of these members.

When the assembly is studied at the structural members, the interior components (plywood and gypsum) retain their low relative humidity. It is important to note that in this scenario the exterior face of the structural wood members are at above 80% relative humidity year round. These conditions may facilitate the growth of mold according to ASHRAE 160-2009. It is recommended that moisture protection be applied to the outer potion of these members.

This chart shows the hybrid option of using both open and closed cell polyurethane foam to insulate and weatherproof the building. The relative humidity remains high at the exterior components, but is reduced to well below 80% on the interior components.

This chart shows the hybrid option of using both open and closed cell polyurethane foam to insulate and weatherproof the building. The relative humidity remains high at the exterior components, but is reduced to well below 80% on the interior components.

When only closed cell polyurethane is used to fill the cavity the performance is similar to the hybrid scenario. This chart shows that the outer components are constantly at a high relative humidity while the interior components remain more closely linked with the interior conditions of the building.

When only closed cell polyurethane is used to fill the cavity the performance is similar to the hybrid scenario. This chart shows that the outer components are constantly at a high relative humidity while the interior components remain more closely linked with the interior conditions of the building.

Ultimately, the project serves to show how an iterative approach to designing building envelope retrofits is critical to achieving an effective solution. By carefully modeling and simulating the initial proposed system we were able to provide critical feedback that led to a more effective and responsive design. In this case, fully understanding the unique two wythe wall system was essential to providing adequate moisture protection for the wall cavity. While a typical masonry wall is capable of preventing water intrusion, the minimal depth of this masonry wall proved insufficient. Our analysis uncovered this flaw and allowed the system to be redesigned to work more effectively. Unlike new construction where the entire envelope system is designed simultaneously, with historic buildings we must work backwards from the existing to create a cohesive design that responds to and compliments the original elements. WUFI serves as an essential tool in understanding the existing and investigating the new.

Written by Halla Hoffer, AIA / Associate

Graphic Design and Architecture

Graphic design is a communication tool that plays an important role in architectural design. At its most fundamental level, graphic design visually communicates information with typography, color, and form. It also, and perhaps more importantly, influences our interaction with and the identity of place and space. From way-finding signage, supergraphics, branding, material and texture, to motion-graphics, graphic design helps integrate word and content with architecture.

Graphic design is used to visually communicate and reinforce the sense of identity for architectural projects – including both new design, renovation, and planning projects. From logo design, visitor orientation and infographics, graphic design is an integral part to the sense of place. It affects the overall experience with the visitor, public, or inhabitant. It is also dependent on the architectural design. Think of the range of materials and its finishes used through-out a building. Graphic design must be intentional, otherwise chaos results in color, type, and form within the design struggling against the architectural design, materials and texture.

OSU-Example-pmapdx-graphic-design
PMA has had the pleasure of incorporating graphic design into projects. The most notable projects have included graphic design for way-finding signage and project branding. For Oregon State University (OSU) PMA created a campus-wide Historic Preservation Plan which included a Historic District, and the design of historic district signage, interpretive panels, and a campus walking tour brochure. We use way-finding signage daily to quickly distinguish different spatial areas, direction, and to distinguish landmarks. The way-finding signage produced for OSU was created to distinguish the campuses Historic District from other campus areas, which included a walking tour of its historically significant campus buildings. Color was utilized as the mnemonic devise to distinguish the Historic District, while also seamlessly integrating with existing OSU colors.

MCM-Logos-Example--pmapdx-graphic-designPMA has been involved with several architectural planning projects that center on significant structures from the Mid-Century Modern era. These projects surveyed and documented hundreds of architecturally significant structures that revolutionized architecture and design throughout the 20th century. On the surface such planning projects can be difficult for a wide audience to understand and appreciate because the final project is not a new or renovated building(s). What better opportunity then, for graphic design to communicate and connect the significance of the project and its structures. For these projects, project logos and marketing collateral were designed as the visual symbols that communicate the entire identity of the projects. While both projects surveyed Mid-Century structures one focused on residential structures while the other did not. Both logos use form with text and color to help shape the sense of which type of mid-century modern structures were surveyed.

John-Yeon-Example-pmapdx-graphic-design Following our planning projects centered on Mid-Century Modern architecture, PMA provided graphic design services for the renovation of the John Yeon designed Rose Festival Headquarters building (former Visitors Information Center). For this project, typography and color were the focal points for communicating the next chapter in this buildings life-cycle. The new graphics, color, and signage produced pay homage to the original design, while being entirely their own.

Graphic design is an essential component to architectural design. It is a visual communication tool that utilizes typography, color, and form as a way to influence our interaction with and provide a sense of identity of place and space. Graphic design can solve important issues such as spatial orientation within a space, or by using graphic tools to communicate story-telling and identity. For a more in-depth look at our projects incorporating graphic design, please visit our OSU and STL Modern project pages.

Written by Kate Kearney, Marketing Coordinator